Коллектив авторов - 100 великих научных открытий

Тут можно читать онлайн Коллектив авторов - 100 великих научных открытий - бесплатно ознакомительный отрывок. Жанр: История, издательство Книжный клуб «Клуб семейного досуга», год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    100 великих научных открытий
  • Автор:
  • Жанр:
  • Издательство:
    Книжный клуб «Клуб семейного досуга»
  • Год:
    2018
  • Город:
    Харків
  • ISBN:
    978-617-12-5819-8, 978-617-12-5821-1
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Коллектив авторов - 100 великих научных открытий краткое содержание

100 великих научных открытий - описание и краткое содержание, автор Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

100 великих научных открытий - читать онлайн бесплатно ознакомительный отрывок

100 великих научных открытий - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Еще Альберт Эйнштейн делал попытки разработать «единую теорию всего», объединив четыре взаимодействия, на которых зиждутся все физические процессы: гравитационное (сила тяжести), электромагнитное, сильное (ответственное за реакции в ядрах атомов) и слабое (влияющее на реакции между элементарными частицами, в том числе нейтрино). Увы, несмотря на все старания, ученый так ни к чему и не пришел.

Но зачем вообще нужно было объединять все эти взаимодействия? Дело в том, что с ростом энергии, выделяющейся при столкновениях и рассеяниях частиц, способы их контактирования постепенно становятся все более схожими. Очевидно, в первые моменты после Большого взрыва, который дал начало нашей Вселенной, существовало лишь одно взаимодействие, но материя охлаждалась, энергия частиц таяла, и взаимодействовать они хотели уже по-разному. Так со временем некогда целостное взаимодействие раскололось на четыре отдельные силы. Ученые долго бились над тем, чтобы представить этот процесс в виде физической и математической моделей, однако им не хватало знаний.

Решение нашел Стивен Вайнберг (р. 1933), написавший знаменитую книгу «Первые три минуты», где понятным языком было изложено то, что происходило в первые 3 мин после Большого взрыва. С 1960-х Вайнберг разрабатывал математическую систему, основанную на симметрии — идее зеркального отражения частиц и их взаимодействий. Если принять эту идею, становится понятным, почему при рассеянии одной частицы на другой наблюдаются те или иные формы взаимодействия между ними.

Само понятие симметрии появилось еще в 1930-х, но ученые никак не могли догадаться, как оно может связать слабые и электромагнитные силы. Знать бы, что общего может быть у этих сил, и можно аналитическим путем прийти к единой теории, поясняющей причины и процесс базовых взаимодействий во Вселенной. А общей у них могла быть лишь некая частица, которая исполняла бы функции переносчика, — подобно тому, как световой квант, фотон, переносит электромагнитные взаимодействия между электронами и позитронами, а глюон переносит заряд между кварками. Сложность состояла в том, что такая частица по идее должна была иметь огромную массу, и технические возможности тогдашних ускорителей не позволяли ее обнаружить.

Только в 1967 г. Вайнберга осенило, что искать загадочную частицу нужно в другом направлении. В попытках соединить тяжелый W -бозон — переносчик слабых взаимодействий — с невесомым фотоном, переносящим электромагнитное взаимодействие, ученый пришел к мысли, что упускает какой-то механизм, неведомый ранее. Проведя еще ряд теоретических исследований, Вайнберг нашел этот механизм и назвал его «бозон Хиггса».

В том же 1967 г. ученый издал статью «Модель лептонов», где четко выстроил в единую теорию принципы взаимодействия частиц и квантовую механику, а главное — связал электромагнетизм со «слабой силой», вызывающей определенные ядерные распады. Подчеркнув, что все это — проявления одной и той же силы, Вайнберг ввел механизм Хиггса, который сообщает частицам массу. За это открытие в 1979 г. ему вручили Нобелевскую премию.

С момента выхода статьи Вайнберга ЦЕРН задался целью доказать его умозаключения, для чего принялся конструировать все более мощные ускорители. В 1973 г. установка Gargamelle представила первое подтверждение существования электрослабого тока. В 1982 г. суперпротонный синхротрон впервые позволил обнаружить W -бозон. Наконец, в декабре 2011 г., проводя эксперименты в ЦЕРН на Большом адронном коллайдере ( LHC — Large Hadron Collider ), ученые смогли четко рассмотреть искомую частицу H .

Дальнейшие наблюдения показали, что бозон Хиггса не заряжен и нестабилен, при этом в зависимости от ситуации распадается по-разному. Благодаря LHC ученые увидели, что частица может распадаться на два фотона, а также на пары электрон/позитрон, мюон/антимюон. Как для микромира, бозон Хиггса живет относительно долго, а рождается либо сам от взаимодействия двух глюонов, либо вместе с парой легких высокоэнергетичных кварков, с одним W - или Z -бозоном или с парой t -кварка и антикварка. Изучая разные механизмы рождения этих частиц на LHC , можно многое узнать о взаимодействии бозона Хиггса с W -, Z -бозонами и t -кварком.

Еще одна важная характеристика Н -бозона — способность взаимодействовать с самим собой. То есть виртуальная частица Н (временный, маложивущий бозон, у которого нарушена связь между импульсом и энергией) может распасться на два обычных бозона. Впрочем, свойства этого процесса ученым еще предстоит исследовать.

По словам сотрудников ЦЕРН, «прошло полвека после публикации статьи Стивена Вайнберга, но до сих пор не была сформулирована теория, которая так же ясно объясняла бы фундаментальную физику. Именно Вайнберг собрал все части головоломки и соединил их в одну, очень простую идею».

Квантовая запутанность

Явление квантовой запутанности и связанная с ним идея множественности миров кажется чем-то фантастическим. Однако это вполне научные понятия, которые имеют практическое применение.

Вся квантовая механика неразрывна с теорией вероятности. Квантовая частица не имеет четких физических характеристик вроде скорости, энергии, координат, момента импульса, определяющего количество вращательного движения, и пр. Поэтому описать квантовую частицу (например, квантон — квант пространства-времени) способна только волновая функция, которая имеет вид амплитуды возможности того, что частица пребывает в некоторой точке, либо движется с определенной скоростью, либо наполнена тем или иным количеством энергии. То, что частица может находиться в заданном месте в заданный момент времени, показывает квадрат абсолютной величины (расстояния между началом системы координат и предполагаемой точкой) ее волновой функции. Как правило, частица словно «размазывается» в пространстве, так что данных о ее возможном местоположении может быть бесконечно много.

Однако еще в прошлом веке ученые сомневались: вдруг каждый квантовый объект все же имеет точные координаты, просто частиц слишком много, и это вынуждает делать лишь статистические описания разницы между их характеристиками? Так, А. Эйнштейн, Б. Подольский и Н. Розен не считали нужным описывать вероятностное поведение отдельных частиц, поскольку это якобы противоречит физической реальности. Между тем основатели квантовой теории Н. Бор, В. Гейзенберг и Э. Шрёдингер были не согласны с таким мнением и уверяли, будто каждая частица ведет себя абсолютно неопределенно.

В 1927 г. на 5-м Сольвеевском конгрессе Эйнштейн поспорил с Бором, ратуя за то, что при одних и тех же исходных данных квантовые явления протекают одинаково и наблюдатель никак не влияет на результат своих измерений. Бор, со своей стороны, доказывал, что все процессы в квантовом мире непредсказуемы и их результат может меняться в зависимости от действий наблюдателя. Собственно, речь в том споре шла о так называемой квантовой запутанности — зависимости, возникающей, к примеру, при столкновении частиц и прочих взаимодействиях. Так, в молекуле спутаны две подсистемы: ядро и электроны, — первое вращается вокруг своей оси, а вторые двигаются вокруг в ту же сторону. Два квантона можно считать спутанными, когда на основе знаний об одном из них мы способны определить характер другого. Один имеет красный заряд? Значит, у другого заряд тоже красный. Первый двигается прямо? Значит, и второй летит в том же направлении.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




100 великих научных открытий отзывы


Отзывы читателей о книге 100 великих научных открытий, автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x