Коллектив авторов - 100 великих научных открытий

Тут можно читать онлайн Коллектив авторов - 100 великих научных открытий - бесплатно ознакомительный отрывок. Жанр: История, издательство Книжный клуб «Клуб семейного досуга», год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    100 великих научных открытий
  • Автор:
  • Жанр:
  • Издательство:
    Книжный клуб «Клуб семейного досуга»
  • Год:
    2018
  • Город:
    Харків
  • ISBN:
    978-617-12-5819-8, 978-617-12-5821-1
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Коллектив авторов - 100 великих научных открытий краткое содержание

100 великих научных открытий - описание и краткое содержание, автор Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

100 великих научных открытий - читать онлайн бесплатно ознакомительный отрывок

100 великих научных открытий - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Позже были открыты сплавы металлов, которые становятся сверхпроводниками уже при температурах ‒253 °C, ‒243 °C и даже ‒113 °C, а это более чем вдвое выше абсолютного нуля (‒273 °C). Как металлам удается проводить ток без сопротивления при такой высокой температуре, наука объяснить не может, ведь теория БКШ в этих случаях не работает. Поскольку такие сверхпроводники слишком ломкие и дорогие, применения им еще не нашлось, а вот низкотемпературные сверхпроводники ныне активно используются в электротехнике, особенно той, что связана с сильными магнитными полями. Например, в составе магнитно-резонансного томографа (МРТ) сверхпроводящие электромагниты помогают диагностировать разные заболевания, поскольку их поле «подстраивает под себя» направление атомов водорода в теле человека и с помощью этих атомов ловит сигналы от всех органов, выявляя поврежденные ткани.

Сверхпроводники готовы транспортировать электричество без энергетических потерь ровно столько времени, сколько поддерживается вокруг них экстремальный холод. Это позволяет им создавать устойчивое магнитное поле и делает прекрасной основой для электромагнитов — не только более мощных по сравнению с железными, но и более экономичных. Скажем, чтобы поддерживать в небольшом 10-сантиметровом соленоиде мощность 10 Тл, необходимо затратить более 5000 кВт электроэнергии и ежеминутно охлаждать магнит тремя кубами воды. Сверхпроводящему магниту достаточно просто находиться в гелиевом «холодильнике», и он будет бесперебойно генерировать поле мощностью 20 Тл!

Если обычные провода теряют по пути 30 % энергии, просто нагревая воздух, то сверхпроводящие за счет отсутствия сопротивления не теряют энергии вовсе, а значит, повышают выработку электричества на треть. Более того, материалы с высоким уровнем проводимости позволяют строить генераторы и двигатели с очень значительным коэффициентом полезного действия. Поэтому сверхпроводники становятся очень востребованными в энергетике.

В начале 2000-х в датском Копенгагене в обычную трехфазную сеть внедрили 30-метровый сверхпроводник, и то же самое сделали в американском Детройте, только длина кабеля была вчетверо больше. Так, постепенно сверхпроводники занимают заслуженное почетное место в мире технологий.

Переменный ток

Мы давно уже привыкли, что по проводам в наших домах течет переменный ток, подразумевающий регулярную смену направления движения электронов и их заряда, а значит — скачки напряжения в цепи. Между тем еще в позапрошлом столетии ученые сомневались, стоит ли использовать переменный ток или же лучше выбрать постоянный.

В начале 1830-х английский физик Майкл Фарадей сообщил об открытии электромагнитной индукции, на которой и основано действие переменного тока, а год спустя ему пришло письмо от некого Р. М. с проектом синхронного генератора — механизма по превращению энергии вращательного движения в энергию переменного тока. Фарадею проект понравился, и он переслал письмо со своими комментариями в научный журнал, где некогда публиковалась и его статья: авось анонимный инженер читает издание регулярно и найдет там материал о генераторе. Судя по всему, Р. М. публикацию увидел, поскольку через несколько месяцев выслал уточнения к проекту и более детальное описание механизма, в котором, впрочем, не предусматривалось схемы для преобразования переменного тока в постоянный, однонаправленный и ровный по уровню напряжения. Потому для связи, освещения и химических реакций такой генератор не подходил.

Французский мастер Ипполит Пикси устранил этот недочет, собрав динамо-машину на основе идеи Р. М. (то есть вращающегося магнита, возбуждающего ток в двух неподвижных катушках проволоки) и добавив соединенный с магнитом щеточный коммутатор, призванный выпрямлять переменный ток. За последующие 40 лет были созданы разные вариации генераторов. Изобретатели увеличивали количество природных магнитов и катушек, даже использовали мощные электромагниты — железные стержни в проволочной обмотке, работавшие от обычного магнита.

В 1870 г. бельгиец Зеноб Грамм сконструировал самовозбуждающийся генератор, который представлял собой кольцо-якорь между двух электромагнитов. Обмотки магнитов одна за другой соединялись с обмоткой кольца, а кольцо — с валом, движимым паровой машиной. На выходе щетки коммутатора сглаживали переменный ток, и в пункт назначения он поступал без заметных скачков напряжения. На Венской всемирной выставке 1873 г. случайно обнаружилось, что динамо Грамма может служить не только генератором, вырабатывающим ток посредством якоря, но и двигателем — если пропускать ток через якорь. Впоследствии генераторы Грамма использовались для питания «свечей Яблочкова» — усовершенствованных дуговых ламп, где электродами служили угольные стержни, разделенные диэлектриком (глиной или гипсом с примесью металла). Постоянный ток для таких ламп не годился: из-за него один электрод сгорал быстрее другого, — а вот переменный то и дело менял местами катод и анод, так что стержни «таяли» одновременно. Поскольку от одного генератора работало сразу несколько ламп, Грамм оснастил электрическую сеть дополнительными индукционными катушками — трансформаторами, которые могли менять напряжение там, где это нужно.

С начала 1880-х перед изобретателями была поставлена сложная задача — придумать, как передавать электричество на длинные дистанции. Между городскими улицами и электростанциями, которые возводились вблизи источников воды и угля, пролегали десятки, а то и сотни километров — однако постоянный ток низкого напряжения, который тогда использовался, мог пройти по проводам всего пару километров, поскольку по пути расходовал массу энергии на борьбу с сопротивлением. Физики и электротехники пробовали повышать напряжение: например, Марсель Депре увеличил разность потенциалов со 100 до 2000 вольт и передал электроэнергию сначала на 57 км, а затем и на все 100 км. В конечном итоге ему удалось добиться напряжения в 6000 вольт, но на большее генераторы постоянного тока были не способны.

В 1882 г. решением задачи занялся сербский изобретатель Никола Тесла (1856–1943). Никола знал, что генератор переменного тока мог бы выдавать низкое напряжение, потом трансформатором увеличивать его до необходимого уровня и в таком виде передавать на любые расстояния, а уже в пункте назначения опять-таки с помощью трансформатора сбавлять обороты. Надо было только сделать такой генератор. Работая в телефонной компании Будапешта, Тесла много над этим размышлял — и в один прекрасный день его озарило. Вспомнив о давнем опыте Ф. Араго с медным кругом, вращающимся вслед за магнитом, изобретатель подумал: а что, если возбудить переменный ток в обмотках полюсов магнита, да так, чтобы эти токи шли со сдвигом по фазе — то есть чтобы колебания их напряжения и силы совершались с некоторой разницей во времени? Сдвиг заставил бы магнитное поле вращаться, и за ним крутился бы ротор генератора.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




100 великих научных открытий отзывы


Отзывы читателей о книге 100 великих научных открытий, автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x