Коллектив авторов - 100 великих научных открытий
- Название:100 великих научных открытий
- Автор:
- Жанр:
- Издательство:Книжный клуб «Клуб семейного досуга»
- Год:2018
- Город:Харків
- ISBN:978-617-12-5819-8, 978-617-12-5821-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - 100 великих научных открытий краткое содержание
100 великих научных открытий - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Чтобы упростить вычисления, астрономы придумали новую единицу длины — парсек. За 1 парсек было принято расстояние, с которого звездный наблюдатель видит радиус орбиты Земли под углом в одну секунду. Длина этой дистанции — 3,26 светового года — 206 265 астрономических единиц (1 а. е. вмещает в себя 149,5 млн км). Если знать параллакс звезды, то рассчитать парсековую дистанцию до нее проще простого: делим единицу на параллакс, и готово!
Позже оказалось, что наблюдения и зарисовки годятся для точных измерений лишь в том случае, если объект удален не более чем на сотню парсеков. Благо в 1837 г., как раз тогда, когда начались серьезные исследования в этой области, француз Луи Дагер изобрел фотографию, и с конца XIX в. астрономы активно стали использовать в своей работе фотосъемку.
Определение расстояний до далеких светил, ставшее возможным только благодаря открытию метода параллакса, позволило оценить яркость звезд и убедиться, что это такие же тела, как Солнце. Более того, с помощью найденных величин астрономы смогли составить объемные карты звездного неба в окрестностях Солнца. Так космос стал немного ближе и понятнее.
Спектральный анализ, закон Доплера и открытие гелия
До начала XIX в. считалось, что изучать звезды «изнутри» невозможно. Величина, скорость вращения, даже удаленность от Земли — это пожалуйста, а вот состав на химическом уровне — ни в коем случае. Ведь звезду не принесешь в лабораторию на обследование. А между тем еще в XVII в. было открыто явление, которое очень помогло бы в этом деле. Речь идет о дисперсии света, обнаруженной английским физиком Исааком Ньютоном в 1666 г. Именно Ньютон первым заметил, что звезды в телескопе с линзовым объективом выглядят многоцветными, и решил понаблюдать, как ведет себя луч, проходя через линзу. Как оказалось, световой поток, направляемый через круглое либо прямоугольное отверстие на линзу, преломляется, раскладывается на отдельные волны и отображается на экране в виде радужного спектра. Причем каждому цвету соответствует «собственная» длина волны, а та, в свою очередь, указывает на угол преломления луча.
О том, что разложение звездного света позволит определять состав небесных тел, впервые догадался британский ученый Уильям Хайд Волластон (1766–1828). В 1802 г. он диспергировал солнечные лучи и заметил на спектре странные черные полоски. Затем этот опыт повторил немецкий оптик Йозеф фон Фраунгофер (1787–1826) — правда, уже со специальным прибором ― спектрометром, сконструированным собственноручно на основе системы призм и измерительной шкалы. Теперь на спектре проявилось еще больше «лишних» полосок.
Разобраться, что к чему, удалось только в середине столетия. Первый шаг к разгадке сделал австрийский физик Кристиан Доплер (1803–1853), причем не в лаборатории, а… на рыбалке. Доплер смотрел, как от поплавка, покачивающегося на воде, кругами расходятся волны, и вдруг подумал: если частота этих волн с удалением от поплавка уменьшается, а длина увеличивается, значит, со световыми волнами должно происходить то же самое! Эксперимента ради ученый разместил поплавок между двух лодок и потянул к одной из них — в направлении движения круги стали чаще (вода словно собралась в «мелкие складки»), а с другой стороны заметно поредели. Из этого Доплер заключил: чем дальше от нас источник излучения либо звука, тем длиннее будет дошедшая до Земли световая/акустическая волна; следовательно, цвет, в котором мы видим звезды, определяется скоростью их отдаления либо приближения к Земле.
Чтобы еще раз подтвердить свою мысль, Доплер собрал на железнодорожной станции людей и пустил мимо них поезд с группой трубачей, которые тянули одну ноту. По мере приближения и отдаления состава звук в восприятии слушателей менялся. Ученый повторил опыт еще несколько раз, задавая поезду разные скорости и меняя местами слушателей и музыкантов. Высота звука варьировалась по-разному, и Доплер убедился: чем выше скорость отдаления источника, тем резче снижается тон — и тем заметнее удлинение волны. Это явление было названо эффектом Доплера.
Опираясь на собственное открытие, ученый предположил, будто изменение длины и частоты волн излучения звезды искажает ее изначально белый цвет, поэтому мы видим светило словно окрашенным. Но это оказалось ошибкой. В 1848 г. француз Арман Физо (1819–1896) установил: эффект изменения длины волны в зависимости от расстояния никак не связан с цветом звезд, его дело — менять внешний вид спектра. Чем больше удлиняется волна, тем сильнее черные полоски смещаются в сторону красного цвета; и наоборот — с укорочением волны (и приближением звезды) линии концентрируются в фиолетовой части.
Почему так получается? Двадцать лет спустя английский ученый Уильям Хаггинс (1824–1910) открыл, что черные линии демонстрируют, какие волны спектра по пути поглощаются теми или иными химическими элементами. Если линии сместились, значит, луч попал, например, в какое-то газовое облако, которое «съело» не те волны, что исчезают обычно. В то же время смещение линий в красную сторону свидетельствует о том, что волна удлиняется, приближаясь к красной части спектра, а смещение в синюю сторону, напротив, показывает укорачивание волны и ее приближение к фиолетовой области. Данные смещения получили названия красного и синего.
Сравнение спектров звездных излучений со спектрами земных химических элементов помогает выяснить, чем именно был поглощен свет — то есть какие элементы составляют поверхность звезды и ее оболочку. В 1863 г. Хаггинс воспользовался этим методом, чтобы определить состав Солнца, и нашел в его атмосфере водород, натрий, магний, алюминий, железо и кальций — все то, что есть и на Земле.
Пять лет спустя англичанин Джозеф Локьер и француз Жюль Жансен изучали спектр протуберанцев (раскаленных газовых фонтанов, вырывающихся с солнечной поверхности) и заметили новую полоску, не сопоставимую ни с одним из известных элементов. Локьер решил назвать «темную лошадку» гелием (так именовали светило греки), а уже в конце столетия соотечественник Джозефа, Уильям Рамзай, обнаружил гелий в составе газа, выделенного раскаленным урансодержащим минералом клевеитом.
В ХХ в. ученые предположили, что гелий на Солнце образуется при соединении атомов водорода и этот процесс сопровождается мощным выбросом энергии. Чтобы доказать данную гипотезу, под землей был установлен специальный детектор, и он уловил потоки нейтрино — частиц, испускаемых в ходе термоядерных реакций на звезде.
В 1914 г. американский астроном Весто Слайфер (1875–1969) открыл, что не только отдельные звезды, но и целые галактики излучают свет со смещением спектральных линий. Это дало основания американцу Эдвину Хабблу (известному ныне благодаря одноименному телескопу) утверждать, что галактики, отдаляясь одна от другой, с каждым мегапарсеком (3 × 10 19 км) ускоряются на 500 км/с.
Читать дальшеИнтервал:
Закладка: