Коллектив авторов - 100 великих научных открытий

Тут можно читать онлайн Коллектив авторов - 100 великих научных открытий - бесплатно ознакомительный отрывок. Жанр: История, издательство Книжный клуб «Клуб семейного досуга», год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    100 великих научных открытий
  • Автор:
  • Жанр:
  • Издательство:
    Книжный клуб «Клуб семейного досуга»
  • Год:
    2018
  • Город:
    Харків
  • ISBN:
    978-617-12-5819-8, 978-617-12-5821-1
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Коллектив авторов - 100 великих научных открытий краткое содержание

100 великих научных открытий - описание и краткое содержание, автор Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

100 великих научных открытий - читать онлайн бесплатно ознакомительный отрывок

100 великих научных открытий - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

По поводу источника первичного излучения ученые не договорились до сих пор. Впрочем, самая популярная теория предполагает, что эти лучи испускаются при взрывах сверхновых звезд. Эту версию подтвердила вспышка 1987-го в Большом Магеллановом облаке, которое сопровождает нашу галактику. Сигнал, поступивший на Землю от новорожденной нейтронной звезды, и дал информацию о космическом излучении.

Черные дыры

Существование черных дыр — очень тяжелых космических объектов, обладающих огромной силой притяжения, — было предсказано в конце XVIII века. Фундаментом для этого пророчества стал закон всемирного тяготения, сформулированный английским ученым Исааком Ньютоном, и его же теория света, согласно которой луч представляет собой ровный поток частиц-корпускул. Объединив в воображении обе теоретические модели, соотечественник Ньютона, геолог, астроном, а кроме того пастор, Джон Митчелл (1724–1793) представил себе такие космические тела, которые притягивают частицы света и уже не выпускают их наружу, из-за чего выглядят абсолютно черными и вообще со стороны не видны. В качестве наглядного примера Джон привел снаряд пушки: выпущенный в небо, он сможет улететь в космос лишь в том случае, если его стартовая скорость будет больше второй космической (минимальной скорости, достаточной для преодоления гравитационного поля планеты). В обратном случае снаряд попросту упадет на земную поверхность. Впрочем, у Земли гравитация не столь велика, чтобы задержать попавшие на нее частицы света, а вот другие тела, более массивные, требуют, чтобы скорость у их пленников превышала световую. Иначе не отпускают.

По прикидкам Митчелла, если бы Солнце уменьшилось в 232 раза (то есть до радиуса в 3 км), но при этом не стало легче, то оно смогло бы поглощать свет. Исходя из этого, размер любого «черного» объекта (точнее, его радиус) Митчелл предложил рассчитывать так: разделить его массу на массуСолнца и полученный результат умножить на 3 км. Затем француз Пьер-Симон Лаплас (1749–1827) сделал собственные вычисления и нашел, что тело с плотностью Земли поглощает корпускулы света в том случае, если оно в 250 раз крупнее Солнца. Увы, к началу XIX в. все труды Митчелла и Лапласа были благополучно забыты: в научном мире утвердилась мысль о волновой природе света, и физики решили — раз волны энергии не имеют массы, гравитация действовать на них не должна.

Минуло более века, прежде чем к ученым пришло понимание того, что волны света излучаются частицами — квантами, а значит, обладают некоторыми свойствами частиц-корпускул. В 1905–1915 гг. Альберт Эйнштейн разработал свою теорию относительности, которая включала несколько дерзких, с точки зрения классической физики, пунктов. Во-первых, скорость — понятие относительное: например, по отношению к поезду пассажир стоит, а по отношению к поверхности земли двигается. Во-вторых, скорость света для всех наблюдателей одинакова, с какой бы собственной скоростью они ни двигались. В-третьих, у Вселенной, помимо трех измерений пространства, имеется четверное — время, и свойства пространственно-временнóй материи определяются скоростями наблюдателей. И в-четвертых, гравитация не может ни ускорять, ни замедлять световой луч — зато способна «растягивать» волны, уменьшая их частоту настолько же, насколько под ее воздействием подтормаживается время.

Заинтересованный этой теорией, немецкий физик Карл Шварцшильд (1873–1916) провел исследования пространства и времени вокруг Солнца, вычислил степень их искривления и сделал вывод: если радиус звезды в разы превышает радиус «черного» тела такой же массы, рассчитанный по формуле Митчелла, пространственно-временной континуум вокруг светила искажается совсем незначительно. Чем ближе радиус звезды к так называемому гравитационному, определенному Митчеллом, тем сильнее искривляется окружающее пространство и ощутимее замедляется время на ее поверхности. Объекты, реальный радиус которых совпадает с гравитационным, останавливают время, растягивают и буквально разрывают пролетающие мимо тела (в том числе звезды), всасывают в себя лучи света и очень сильно деформируют окружающее пространство. Примерно так же провисает натянутая эластичная ткань, если на нее положить массивный металлический шар: оттянув ткань вниз, шар словно создаст гравитационное поле, и шарики полегче скатятся к нему. Если бы центральный шар вращался, то остальные шарики двигались бы вместе с ним, и их скорость напрямую зависела бы от его скорости. Поэтому вокруг обычной звезды небесные тела вращаются в сто раз медленнее, чем светила, расположенные поблизости сверхмассивного черного объекта. (Впрочем, ни Шварцшильд, ни сам Эйнштейн не верили в существование таких монстров.)

В 30-е годы ХХ в. стало известно, что звезды массой меньше, чем 1,5 Солнца, постепенно сжигают все свое ядерное горючее, а затем избавляются от газовой оболочки и оставляют себе лишь холодеющее ядро — то есть превращаются в белых карликов. Затем у советского физика Льва Ландау возникло предположение о взрывах звезд более тяжелых, чем 1,5 Солнца: мол, после освобождения от оболочки ядро такого гиганта сжимается, и в нем происходят химические реакции, преобразующие его в очень плотную нейтронную звезду.

Но какой может быть максимальная масса прародительницы нейтронной звезды? На этот вопрос, озадачивший всех астрофизиков, попробовал ответить американец Роберт Оппенгеймер (1904–1967). Он установил, что нейтронные звезды весят не более 3 солнечных масс, а значит, и сверхновые не должны перевешивать нескольких Солнц. Если же сверхновая рождает тело массивнее, чем 3 Солнца, то это уже не нейтронная звезда, а что-то иное. Такой объект сжимается до тех пор, пока его радиус не сравняется с гравитационным.

Позже, уже в 1960-х, ученые выяснили, что массивное ядро может сжаться до точки (сингулярности) с безграничной силой тяготения, и вокруг этой точки время замрет, а пространство деформируется донельзя. С подачи американского физика-теоретика Джона Уилера (1911–2008) сингулярность получила прозвище черной дыры.

Квантовые физики углубили эту теорию предположением, что пространство, окружающее черную дыру вплоть до горизонта событий (границы, за которой ее гравитация теряет всепоглощающую силу), непрерывно вспучивается и пузырится, образуя квантовую пену. Из-за этого электрическое, магнитное и гравитационное поля постоянно меняются, и возникают пáры временных, виртуальных частиц, разлетающихся в противоположные стороны. Мощные всплески гравитации выносят одну частицу из каждой пары за горизонт, и в итоге освободившиеся частицы наполняются энергией, испускаяизлучение. Таким образом, по словам известного физика-теоретика Стивена Хокинга (1942–2018), дыра излучает свет, подобно слабо нагретому черному телу, и постепенно «тает» — теряет массу. Когда ее диаметр достигнет 10 -33 см (длины Планка — Уилера), она вспыхнет, выбросив столько энергии, сколько выделяется при взрыве миллиона водородных бомб массой по 10 мегатонн каждая. Останется от нее лишь частица с максимально возможной массой — 22 микрограмма.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




100 великих научных открытий отзывы


Отзывы читателей о книге 100 великих научных открытий, автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x