Банеш Хофман - Альберт Эйнштейн. ТВОРЕЦ И БУНТАРЬ.
- Название:Альберт Эйнштейн. ТВОРЕЦ И БУНТАРЬ.
- Автор:
- Жанр:
- Издательство:Прогресс
- Год:1983
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Банеш Хофман - Альберт Эйнштейн. ТВОРЕЦ И БУНТАРЬ. краткое содержание
Мы стремились построить свой рассказ таким образом, чтобы он носил сугубо повествовательный характер и чтобы читатель мог уловить сущность этого человека и его научной работы, а также окунуться в научную и политическую атмосферу той эпохи, в которой жил и творил Альберт Эйнштейн. Автор
Альберт Эйнштейн. ТВОРЕЦ И БУНТАРЬ. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Но на этом дело не закончилось. Дальнейшее подтверждение волновой теории света пришло с совершенно неожиданной стороны. В 1819 г. датский физик Ханс Кристиан Эрстед обнаружил специфическую связь между электричеством и магнетизмом. Он показал, что электрический ток воздействует на магнитную стрелку компаса. Вскоре после этого французский физик Андре Мари Ампер с таким блеском провел математический и экспериментальный анализ этого явления, что его даже провозгласили Ньютоном электромагнетизма.
Тем временем выдающиеся экспериментальные открытия в области электромагнетизма сделал англичанин Майкл Фарадей. Он не получил специального образования и потому не мог столь искусно, как Ампер, применить математический аппарат для описания результатов своих экспериментов. Это обернулось большой удачей, ибо привело к революции в науке. Ампер и другие ученые сосредоточили свое внимание на том, что было доступно наблюдению, — на магнитах, проводах, по которым течет ток, прочей Аппаратуре и на измерении расстояния между ними. Таким образом, они следовали традиции, обязанной своим происхождением огромным успехам принципов механики Ньютона и закона гравитации. Эту традицию можно назвать изучением дальнодействия — действия на расстоянии. Фарадей же считал эту сторону физики второстепенной. По его мнению, самые существенные физические явления происходят в окружающем пространстве — поле, которое он в своем воображении наполнил «щупальцами». Именно эти щупальца своими «толчками» и движениями вызывают наблюдаемые электромагнитные явления. И хотя Фарадею удалось удивительно просто и точно объяснить свои эксперименты по электромагнетизму, большинство физиков — приверженцев широкого применения математики — считали представления Фарадея, не подкрепленные вычислениями, наивными.
Среди тех немногих, кто не разделял этой точки зрения, был шотландский физик Джеймс Клерк Максвелл (он уже упоминался мельком в связи с поступлением Эйнштейна в Бюро патентов). Максвелл осознал, что за примитивными на первый взгляд представлениями Майкла Фарадея о поле скрывалось богатейшее физическое содержание, и безоговорочно поверил в интуицию Фарадея. Надо сказать, что и сам Максвелл обладал не менее замечательной научной интуицией. Она-то и привела его к созданию псевдомеханической модели электромагнитного поля. Максвелл и сам не считал эту модель с фигурирующими в ней вихрями и шариками сколько-нибудь правдоподобной. Она была введена как сугубо временное интеллектуальное подспорье, призванное оказать помощь в разработке подлинно серьезной физической теории. По крайней мере эта модель исключала действие на расстоянии. Какова же была присущая Максвеллу интуиция, если в этой невероятной модели оказались заложены основы электромагнетизма! Используя упрощенные понятия, Максвелл построил чрезвычайно удачную систему уравнений, описывающих электромагнитное поле. Эта система уравнений обладала замечательной симметрией, что и позволило Максвеллу чисто математическим путем прийти к выводу о существовании электромагнитных волн, распространяющихся со скоростью света. Эти волны, как он установил, должны обладать наряду с другими свойствами также и теми, которые Юнг и Френель экспериментально обнаружили у световых волн. В результате Максвелл заявил, что световые и электромагнитные волны — это, по сути, одно и то же.
Все это происходило в 1861–1864 гг. Но поскольку соображения симметрии выходили за границы физической достоверности, теория Максвелла вызывала лишь восхищение, однако при жизни автора не получила широкого признания. Максвелл умер в 1879 г., и в этом же году родился Эйнштейн. Теория Максвелла нашла свое подтверждение лишь в 1888 г., когда немецкий физик Генрих Герц генерировал и уловил то, что сейчас называется радиоволнами. Он неоспоримо доказал, что поведение этих волн в точности соответствовало предсказанному Максвеллом. В результате уравнения Максвелла наконец- то были оценены по достоинству. Спустя год или два Герц отметил: «С нашей, человеческой, точки зрения, волновая теория света — несомненный факт». Световые волны — это такие электромагнитные волны, чьи частоты или скорости колебания лежат в довольно узком диапазоне, причем именно их частота определяет цвет. Непосредственно увидеть электромагнитное излучение за пределами этого узкого диапазона невозможно — оно становится невидимым. Более высокие частоты — это так называемое ультрафиолетовое излучение, а еще более высокие — рентгеновское и гамма-излучение. Более низкие частоты — это инфракрасное излучение, а еще более низкие — радиоволны. Подобное обобщение весьма примечательно. Объединенные единой теорией различные типы излучения представлены членами обширного семейства электромагнитных явлений, родственных той силе, которая управляла движением магнитной стрелки компаса и так заинтриговала пятилетнего Эйнштейна. Однако довольно о свете и электромагнетизме, эту гему на некоторое время можно оставить и перейти к рассмотрению теплоты. Вы возразите, что о ней только что говорилось. Но разговор касался теплоты, в форме излучения. Раскаленное железо также обладает запасом тепла (что в наши дни объясняется микроскопическими внутренними колебаниями), которое наряду с излучением считается одной из многих форм энергии.
История изучения теплоты и развития термодинамики как науки продолжительна и запутанна. В нашу задачу не входит раскрыть ее полностью. Хотя это несправедливо по отношению к смелым творцам, заложившим основы термодинамики вопреки сильному сопротивлению физиков, но не надо забывать, что наша книга — об Эйнштейне, а он все еще ожидает своей очереди, чтобы появиться в этой главе. Отметим лишь вкратце, что теоретикам, и в первую очередь Максвеллу и Больцману, удалось разработать теорию газов. Согласно этой теории, газы состоят из сталкивающихся частиц, находящихся в хаотическом движении. Энергия этого движения, подобно энергии внутренних колебаний в твердом теле, рассматривалась как теплота. А теперь поспешим в 1900 г. и посмотрим, что же послужило толчком к появлению первой знаменитой работы Эйнштейна 1905 г.
Берлин. Октябрь 1900 г. Выдающийся немецкий физик Макс Планк взбудоражен услышанными новостями. Как и другие физики, он пытался найти объяснение свечению горячего черного^ тела — идеальной модели раскаленного железа. В предшествующие годы Планк занимался выводом на основе известных физических принципов формулы, описывающей спектр свечения или, иначе говоря, распределение энергии излучения по частоте. Эта формула излучения черного тела была впервые выведена немецким физиком Вильгельмом Вином, получившим в 1911 г. Нобелевскую премию. Казалось, его формула вполне соответствовала экспериментальным данным, однако из экспериментов Планку было известно, что она была вполне адекватна для высоких частот, но не годилась для низких. Что было делать? Планк, искусно применив математический аппарат, вывел новую формулу излучения черного тела, и она выдержала проверку экспериментом.
Читать дальшеИнтервал:
Закладка: