Банеш Хофман - Альберт Эйнштейн. ТВОРЕЦ И БУНТАРЬ.
- Название:Альберт Эйнштейн. ТВОРЕЦ И БУНТАРЬ.
- Автор:
- Жанр:
- Издательство:Прогресс
- Год:1983
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Банеш Хофман - Альберт Эйнштейн. ТВОРЕЦ И БУНТАРЬ. краткое содержание
Мы стремились построить свой рассказ таким образом, чтобы он носил сугубо повествовательный характер и чтобы читатель мог уловить сущность этого человека и его научной работы, а также окунуться в научную и политическую атмосферу той эпохи, в которой жил и творил Альберт Эйнштейн. Автор
Альберт Эйнштейн. ТВОРЕЦ И БУНТАРЬ. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Эйнштейн был в самой гуще борьбы за правильную интерпретацию новорожденной квантовой механики. Он незамедлительно вступил в спор с Борном по поводу вероятностной интерпретации теории Шредингера. Однако главным его научным противником был Бор.
В конце 1927 г. на пятом Сольвеевском конгрессе эта борьба велась уже в открытую. Борн и Гейзенберг утверждали, что неопределенность неизбежна и что ввиду отсутствия строгой причинности вероятности выражают все, что может быть в таком случае выражено. Бор был с этим согласен. Эйнштейн протестовал. Он не желал принимать то, что отвергала его интуиция. Он чувствовал, что этой теории недоставало завершенности. Тогда он выдвинул целый ряд остроумнейших доводов в пользу своей точки зрения. Никогда еще квантовая механика не подвергалась столь массированной атаке. Однако, хотя Бор и его союзники оказались в весьма затруднительном положении, позиций они не сдали. Оттачивая и совершенствуя свои концепции в ходе сражения, они одно за другим смели все возражения Эйнштейна, и тот при всей своей изобретательности вынужден был отступить. Непостижимое столкновение (электрона и фотона) при наблюдении было неизбежно. Любая предложенная Эйнштейном схема измерения этого столкновения требовала нового наблюдения, которому соответствовало его собственное столкновение, а для того, чтобы измерить последнее, необходимо было еще одно наблюдение (со столкновением) — и так далее. Вся последовательность не оставляла никакой видимой надежды на победу. Копенгагенская интерпретация выдержала атаку Эйнштейна. Сразу после конгресса Бор и Эйнштейн продолжили сражение — теперь уже в доме Эренфестов, и хозяин, боготворивший и того и другого, был немало потрясен тем, что один из его героев не желает соглашаться с развиваемой в Копенгагене интерпретацией. Через несколько месяцев — в мае 1928 г. — Эйнштейн написал Шредингеру: «Утешительная философия — или религия — Гейзенберга — Бора столь искусно придумана, что до поры до времени она подкладывает мягкую подушку под голову истинно верующего, с которой его не так-то легко согнать».
В 1930 г., на шестом Сольвеевском конгрессе — последнем, на котором довелось присутствовать Эйнштейну, — он вновь предложил обойти гейзенберговский принцип неопределенности. На сей раз Бор был ошеломлен. Аргументы Эйнштейна казались неуязвимыми, и Бор не сумел отыскать в них ни одного слабого места. А ведь если бы его действительно не было, то вся квантовая теория, которая в то время процветала как никогда ранее, оказалась бы глубоко несовершенной. Вот этого Бор никак не мог допустить. Но доводы Эйнштейна упрямо и неумолимо стояли перед ним, требуя капитуляции. Бор пытался и гак, и этак разрушить их, но они выдерживали любой его штурм. Бор в полном смысле слова лишился сна, ведь на карту было поставлено слишком многое. Почти всю ночь он провел в раздумьях над этой проблемой, и к утру решение было найдено: аргументы Эйнштейна оказались несостоятельными из-за им же самим введенного в физику принципа эквивалентности и, следовательно, из-за его же обшей теории относительности. Бор одержал чрезвычайно важную победу. Эйнштейн был вынужден признать, что эта партия им проиграна, а значит, признать справедливость принципа неопределенности Гейзенберга. Но он все еще не отказался от борьбы.
В 1933 г. в Бельгии незадолго до того, как навсегда покинуть Европу, Эйнштейн упомянул об одной своей новой идее. Через два года вместе со своими сотрудниками по Институту высших исследований Борисом Подольским и Натаном Розеном он изложил ее в статье, суть которой мы попытаемся передать, оставив в стороне математику. Рассуждение отличается обманчивой простотой. Вообразим, что два электрона А и В отскакивают друг от друга на расстояние, достаточное, чтобы ни один из них не мог оказать существенное воздействие на другой. В этом есть определенная хитрость, ведь если провести наблюдение за А, можно строить выводы относительно В, и никто не сумеет доказать, что при наблюдении А столкновение затронуло В или что вообще каким бы то ни было образом было осуществлено воздействие на В. Сама квантовая теория говорит, что, если измерять координаты А, можно сразу же вывести точные координаты В, а если вместо этого проводить наблюдение точного импульса А, можно тут же вывести точный импульс В. Итак, стратегия ясна: мы будем проводить наблюдение за А, но говорить при этом о В, ведь на В наше наблюдение никоим образом не влияет. Предположим для наглядности, что наши электроны отскакивают друг от друга в воскресенье, а расстояния таковы, что мы можем ждать целую неделю, прежде чем проведем наблюдение за А. Согласно Гейзенбергу, нельзя с точностью определить одновременно и координаты, и импульс электрона. Однако мы можем сделать выбор и измерять что-то одно. Так что в понедельник мы решаем, что будем измерять точные координаты А . Во вторник мы передумываем и договариваемся, что вместо этого лучше измерить точный импульс А. В среду нам кажется, что в конце концов следует измерить координаты А. В четверг мы снова предпочитаем импульс А . В пятницу — координаты А. В субботу — импульс А. И в воскресенье, не в силах сделать окончательный выбор, подбрасываем монетку и, поставив на «орла» или «решку», выполняем то измерение, которое нам выпадает.

Предположим, что нам выпало измерить координаты электрона А. В таком случае, проведя наблюдения, мы тут же узнаем и координаты второго электрона В, не оказывая на него никакого воздействия. Это гарантирует нам сама квантовая теория. Представим теперь, что монетка упала так, что мы должны провести измерения не координат, а импульса А. Тогда, проведя наблюдение, мы тут же получим и импульс В , опять- таки не оказывая на В никакого воздействия.
Конечно, нельзя всерьез представить дело так, что электрон В будет, подобно хамелеону, подстраиваться под наше настроение и то будет иметь точные координаты, но не иметь импульса — как, скажем, в понедельник, — то уже во вторник получит импульс, но лишится координат; затем в среду он их снова приобретет, но потеряет импульс, чтобы в четверг снова получить его и потерять координаты, — и так далее до самого последнего момента, пока наконец подброшенная монетка не разрешит все сомнения и колебания и не подскажет выбор. И все это время В будет существовать изолированно в физическом смысле от А, от нас и от нашей монетки. Безусловно, доказывали Эйнштейн и его коллеги, как точные координаты, так и точный импульс В должны обладать физической реальностью одновременно. Однако Гейзенберг показал, что квантовая теория запрещает нам знать сразу и то и другое. Следовательно, квантовая теория не дает законченного описания физической реальности. Это неполная теория.
Читать дальшеИнтервал:
Закладка: