Михаил Васин - Клад острова Морица
- Название:Клад острова Морица
- Автор:
- Жанр:
- Издательство:Лениздат
- Год:1978
- Город:Ленинград
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Михаил Васин - Клад острова Морица краткое содержание
Эта книга — о подобных, не всегда заметных с первого взгляда кладах. Их ищут и находят ботаники и физики, микробиологи и математики, создатели роботов и дизайнеры. Автор в живой и увлекательной форме научно-популярных очерков рассказывает об открытиях последнего времени, сделанных учеными Ленинграда и других научных центров страны.
Читатели узнают о новейших достижениях науки, о том, как она служит людям в их практических повседневных делах, о духовной силе нашего советского человека, преобразующего и украшающего природу.
М. Васин — обозреватель газеты «Правда», лауреат премии Союза журналистов СССР (1969 г.), автор нескольких научно-популярных книг: «Два шага до чуда», «Двое на перекрестке», «Чистое небо», «Гости из будущего».
Книга предназначена для массового читателя.
Клад острова Морица - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
И наконец, третий тип. Это именно те вещества, о которых говорилось выше, — холестерические. Их молекулы, напоминающие продолговатые пластинки, расположены параллельно друг другу, словно листы в стопке бумаги. Перемещаться молекулы могут либо поступательно, просто скользя друг по другу, либо вращаясь — закручиваясь и образуя спиральную структуру.
Стопка молекул-пластинок, винтообразно закрученная, — это, предполагают ученые, и есть тот главный механизм, который изменяет цвет пленки. Дело в том, что витки молекулярной спирали способны разлагать, подобно призме, белый свет и отражать лишь строго определенные его составляющие, — скажем, красный, зеленый или синий. Но спираль очень неустойчива, подвижна: и едва заметные изменения температуры, электрического и магнитного полей, и ничтожные примеси посторонних веществ, и механические воздействия — все может либо сильнее закрутить молекулярные слои относительно друг друга, либо ослабить закрутку. А от этого мгновенно меняются отражательные способности витков и, следовательно, изменяется видимый нами цвет пленки.
В анизотропных жидкостях другого типа действует иная механика. Скажем, физические нагрузки, деформация жидкокристаллической пленки приводит к нарушению четкого молекулярного строя, а значит, и к изменению оптических свойств вещества (например, его прозрачности). К такому же конечному результату приводит и воздействие электрического, магнитного полей. Но глубинный процесс здесь иной: электромагнитные силы заставляют двигаться ионы примесей, всегда содержащиеся в жидкокристаллическом веществе. Это движение нарушает ориентацию молекул, они начинают «роиться», образуя множество мельчайших шаров, конусов, блоков неопределенной формы, на границе которых и происходит рассеяние света: препарат становится мутным.
Так ли это на самом деле или нет, верны ли эти гипотезы о структуре жидких кристаллов и процессах, происходящих в них, покажет будущее. Но и сейчас, пребывая в полумраке нового, неизученного и необжитого мира, ученые успели заметить, какие далекие перспективы открываются здесь.
Экскурсия четвертая
БРАТЬЯ ПО РАЗУМУ — МАШИНЫ

Математика… Наука древняя и всегда юная. Предельно ясная, конкретная и невообразимо абстрактная. Могущественная, властно вторгающаяся во все области человеческой деятельности и так воспарившая в отвлеченность.
Еще античные ученые и философы-идеалисты, последователи Пифагора, открывшие «непостижимые уму» иррациональные числа, обожествляли эту науку. Чрезвычайная сложность многих ее разделов, широта применимости ее законов, математические «чудеса», с которыми издавна встречались ученые, — все это не раз и впоследствии приводило к тому, что между словами «математическое» и «божественное» ставился знак равенства.
Но если поднимали на недосягаемую высоту математику прошлого, то куда бы следовало поместить математику наших дней? Выше самого всевышнего? И вот что интересно. Как вели бы себя великий Пифагор и его последователи — пифагорейцы, если бы их пригласили в одну из современных лабораторий, занимающихся какой-либо новой отраслью математики? Неужто преклоняли бы колени чуть ли не у каждого стола, у каждой вычислительной машины?
Впрочем, и нам, свидетелям зарождения новых направлений этой науки, многие математические разработки кажутся тайной за семью печатями. Лет десять — двенадцать тому назад, когда Ленинградский вычислительный центр Академии наук СССР только еще, как говорится, становился на ноги, сюда приходили многие инженеры и ученые, чтобы просто посмотреть, чем занимаются здесь математики. Правда, к праздному любопытству примешивалась и благородная цель: нельзя ли, дескать, впрячь «новую» математику в свои собственные производственные или научные дела? И нередко оказывалось, что можно. Но выяснилось это не сразу, сотрудникам лабораторий Вычислительного центра приходилось тратить немало времени, чтобы растолковать гостям, чем они занимаются.
Это и понятно. Представьте, что вы подходите к двери со странной табличкой: «Лаборатория теории игр и исследования операций». Вам говорят, что руководитель лаборатории Николай Николаевич Воробьев недавно защитил диссертацию и является единственным (в то время) доктором наук по данной специальности в нашей стране. Вы открываете дверь и встречаетесь взглядом с тигром, готовым прыгнуть на вас из рамы на стене.
Из-за канцелярского стола поднимается человек с веселым и добрым лицом и, оглядываясь на властелина джунглей, объясняет:
— Это эмблема нашей лаборатории. Видите ли, любая игра — это столкновение противоположных намерений, борьба. Так что теория игр — это теория борьбы: борьбы за шахматной доской, на ринге и футбольном поле, борьбы человека с природой, с преступностью в человеческом обществе, борьбы между государствами. С этим направлением исследований тесно связано другое— исследование операций. Операции мы осуществляем или сталкиваемся с ними ежедневно…
Человеку, далекому от прикладной математики, Николай Николаевич даже рассказывал свою «научную биографию». Причем начинал он издалека, с самого детства — так можно было незаметно ввести гостя в круг специальных проблем и не отпугнуть «заумью».
— Когда я был еще совсем маленьким, — говорил Воробьев с улыбкой, — то часто гулял с бабушкой и развлекался тем, что следил за трамваями. Особенно занимала меня ситуация, когда трамвай подъезжал к остановке, а предыдущий еще не успевал отойти. Тогда задний останавливался, и получалась очередь. Иногда в очереди оказывалось три трамвая, а то и четыре. Причем очереди образовывались сами собой, просто так, случайно. Так же случайно они и рассасывались.
Потом мы с бабушкой заходили в булочную, и нам обычно приходилось постоять в очереди. Бабушка говорила, что в булочной всегда надо стоять четверть часа. И пока мы стояли, я размышлял над этими ее словами. Ведь мы ничем не лучше и не хуже других. Значит, все остальные тоже стоят за хлебом четверть часа. Но ведь тогда все очень просто! Чтобы не было очереди, каждый должен приходить в булочную на четверть часа позже.
Однако мне тут же приходила другая мысль: ведь если все придут в булочную на четверть часа позже, то получится точно такая же очередь… Я запутывался в этих противоречиях, чувствовал, что здесь есть какая-то тайна, и сокрушался о невозможности в нее проникнуть. Я, конечно, тогда не подозревал, что математики уже разрабатывают похожие вопросы и что со временем разовьются «теория очередей», «теория расписаний», «теория уличного движения». Тем более не мог я предполагать, что занятия этими теориями будут в какой-то мере входить в мои служебные обязанности математика. Но что не входит в круг деятельности математика? Вот вам пример.
Читать дальшеИнтервал:
Закладка: