Анатолий Фоменко - Империя – II
- Название:Империя – II
- Автор:
- Жанр:
- Издательство:Римис
- Год:1995
- Город:Москва
- ISBN:5-9650-0020-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Анатолий Фоменко - Империя – II краткое содержание
Созданная окончательно в XVI веке н.э. и принятая сегодня хронология и история древнего и средневекового мира, по-видимому, неверна.
Это понимали многие выдающиеся ученые. Но построить новую, непротиворечивую концепцию истории оказалось очень сложной задачей.
По-видимому, окончательная в целом версия хронологии древней и средневековой истории была предложена А. Т. Фоменко в 1979 году. В дальнейшем разработкой этой проблемы занималась группа математиков и физиков, в основном, в Московском государственном университете. Новая концепция основывается, прежде всего, на анализе исторических источников методами современной математики и обширных компьютерных расчетов.
В своей предыдущей книге «Новая хронология и концепция древней истории Руси, Англии и Рима» (М., МГУ, 1995) авторы рассматривали историю Русско-Монгольской империи «изнутри», то есть из того центра, где она возникла и откуда стала расширяться. Этим центром была Владимиро-Суздальская Русь.
В настоящей книге анализируется история Русско-Монгольской империи как бы «извне». Рассказывается об истории тех стран, в том числе и территорий Западной Европы, которые были в XIV веке захлестнуты волной Монгольского завоевания, и затем, в XVI-XVII веках (при распаде огромной империи) наконец отделились от метрополии и стали самостоятельными.
В этой книге изложены:
Новая интерпретация истории Западной Европы.
Новая интерпретация истории Китая.
Новая интерпретация истории Египта.
Возможное разрешение одной из самых сложных загадок истории – кто такие Этруски?
Книга предназначена для самого широкого круга читателей, интересующихся применением естественно-научных методов в истории.
Том 2. Части V-VII.
Империя – II - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Это значит, что структура дубликатов в списке – вещь достаточно «тонкая» и при случайном возмущении списка она быстро разрушается, исчезает.
Следовательно, то обстоятельство, что мы все же обнаруживаем такую структуру в большом количестве реальных хронологических списков, отнюдь не тривиально. случайно оно возникнуть не могло.
Мы воспользуемся примером списка имен армянских католикосов для того, чтобы показать, как меняется гисторамма частот разнесений связанных имен при постепенном разрушении системы дубликатов в списке (остальные хронологические списки имен ведут себя аналогично).
Обратимся снова к рис. 27. На нем помимо сплошной кривой изображена более сглаженная – пунктирная. Это гистограмма f2 (x) для (искаженного) списка имен армянских католикосов, в часть глав которого (30 из 175) было добавлено одно и то же имя.
Видно, что эта гисторамма существенно ближе к прямой линии , чем исходная, хотя она и повторяет в точности ее структуру (места всплесков не изменились, но сами всплески стали более пологими).
Наконец, случайная перестановка 20% имен из списка АК полностью разрушила структуру дубликатов в нем (с «точки зрения» нашей методики): вычисленная после этого гистограмма f2 (x) в точности совпала с линейной функцией (пунктирная прямая на рис. 27 изображает одновременно эту гисторамму и гистограмму f1 (x)).
3. Мера различия между гистограммами частот разнесения имен
Здесь мы введем меру различия между распределениями Pз=x и Pз=x|A, где A – некоторое локальное событие. Эта мера имеет смысл вероятности того, что реализованное в эксперименте различие между этими двумя распределениями возникнет при гипотезе о правильности данного хронологического списка Х.
Предположим, что рассматриваемый хронологический список Х является результатом некоторого случайного эксперимента. При этом, мы будем считать, что общее количество имен в списке Х и их кратности вхождения в список заранее фиксированы (неслучайны), а порядок имен в списке Х является случайным элементом, который мы обозначим через w_1.
Соответствующее вероятностное пространство обозначим через (W_1, S_1, P_1), где W_1 – множество всех перестановок имен в списке Х; S_1 = 2^W 1, P_1 – некоторая вероятностная мера на S_1, относительно которой мы пока не будем делать никаких предположений.
Таким образом, порядок имен в хронологическом списке Х мы рассматриваем как элементарный исход в вероятностной схеме (W_1, S_1, P_1).
Рассмотрим разбиение списка Х на N глав одинакового объема (Мы предполагаем, что длина списка n делится на N.) Число глав N считаем фиксированным и не зависящим от случая. Как и выше, построим по списку Х, разбитому на N глав, вероятностную схему повторного выбора с возвращением двух элементов списка Х и определим случайную величину з – разнесение выбранных элементов списка (абсолютную величину разности номеров глав, их содержащих).
Соответствующее этой схеме вероятностное пространство (W_2, S_2, P_2) состоит из множества элементарных исходов W_2, которое представляет собой множество пар порядковых номеров выбранных элементов в списке : w_2 = i, j, алгебры событий S_2 = 2^W 2 и равномерного распределения:
P_2(w_2) = 1/n^2 для любого w_2EW_2.
Поскольку мера P_2 не зависит от w_1, то итоговое вероятностное пространство (W, S, P) является произведением пространств (W_1, S_1, P_1) и (W_2, S_2, P_2):
W = W_1xW_2; S=2^W; P(w)=P(w_1, w_2)=P_1(w_1)xP_2(w_2).
На вероятностном пространстве (W, S, P) определена случайная величина з:
з(w)=з(w_1, w_2)=з(w_2).
Пусть A – некоторое событие из S. Сформулируем предположение о вероятностной мере P_1 (то есть о вероятностном механизме образования порядка имен в правильном хронологическом списке).
Предположение. Предположим, что случайная величина з не зависит от события A:
Pз=x|A = Pз=x для всех x.
Никаких других условий на меру P_1 мы накладывать не будем.
Сделанное предположение зависит от выбора события A. Если в качестве A выбрать локальное событие (определение локальных событий дано выше), то это предположение вытекает (для правильного хронологического списка) из сформулированного выше следствия гипотезы Н_0:
Pз=x|A, з»е = Pз=x|з»е,
где е – радиус затухания зависимости в списке Х.
Здесь мы без ограничения общности будем считать, что е=0.
Общий случай сводится к этому простой модификацией вероятностой схемы (W_2, S_2, P_2).
Глава 3. Матрицы связей для хронологических списков имен
1. Как узнать – какие именно части летописи являются дубликатами?
В предыдущей главе с помощью гистограмм частот разнесений связанных имен проверялась гипотеза об отсутствии дубликатов в данном хронологическом списке имен.
В тех случаях, когда присутствие дубликатов было обнаружено, определялись типичные сдвиги между дубликатами в списке. Однако метод гистограмм частот связанных имен не дает прямого ответа на следующий основной вопрос:
Какие именно части списка являются дубликатами и в какой мере?
Напомним, что в соответствии с понятием слоистой хроники, два отрезка хронологического списка называются дубликатами , если они содержат соответственно дублирующие друг друга слои .
В данной главе мы опишем метод, позволяющий отвечать на этот вопрос. Результатом его применения к историческому хронологическому списку будет являться так называемая « матрица связей» (фрагментов) данного списка. Это – квадратная таблица , показывающая в какой мере те или иные отрезка списка имен являются дубликатами друг друга («связаны» между собой).
Мы уже вкратце описали идею метода, пользуясь модельной задачей о колоде карт (см. главу 1). Проведем теперь эти рассуждения уже не для модельной задачи, а для реальных хронологических списков.
Пусть имеется список имен Х, который может содержать ошибки, пропуски и (или) дубликаты.
Неизвестный нам истинный список имен , лежащий в основе реального списка Х, обозначим через Y. Таким образом, Y – воображаемый список имен, содержащий полные неискаженные данные (скажем, об именах правителей данного государства) для длительного исторического промежутка времени I_Y.
Реальный список имен Х, который находится в нашем распоряжении является искажением , «зашумлением» списка Y с возможной потерей доли информации.
Предположим, что промежуток времени I_Y был описан многими летописцами – очевидцами или современниками происходящих событий.
Каждый из них составлял свою короткую летопись Z_i по современным ему событиям. Поскольку мы изучаем сейчас не весь текст летописи, а только имена, извлеченные из нее, то можем считать (для удобства), что каждый летописец составлял некий короткий хронологический список имен, который мы также обозначим через Z_i.
Читать дальшеИнтервал:
Закладка: