Константин Феоктистов - Траектория жизни
- Название:Траектория жизни
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Константин Феоктистов - Траектория жизни краткое содержание
Траектория жизни - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Условия работы, большое количество включений двигателей определяют компоненты топлива: высококипящие, самовоспламеняющиеся, а следовательно, и токсичные. Токсичность компонентов - большой недостаток. Тем более что использование их приводит к выходу космонавтов на поверхность, "политую" ими. Да и есть в этом что-то нелогичное и непорядочное: являются люди на чужую планету, где они ищут жизнь, и начинают с того, что отравляют район посадки и предполагаемые живые организмы, которые они ищут в этом районе. Прагматические соображения подталкивают к надежным и удобным для применения токсичным компонентам, да и репутация людей у "марсиан" давно уже испорчена: ведь все опускавшиеся на поверхность Марса автоматы использовали такие же компоненты. Но неплохо бы поискать и нетоксичную пару высококипящих (то есть находящихся в жидком состоянии при нормальной температуре), самовоспламеняющихся (для обеспечения надежности работы двигателей, включающихся десятки, сотни и тысячи раз), достаточно стабильных ударостойких компонентов. В принципе есть пара компонентов, близкая по характеристикам к идеалу, определяемому этими противоречивыми требованиями: концентрированная перекись водорода и какое-нибудь нетоксичное углеводородное горючее с присадками, обеспечивающими самовоспламенение с перекисью водорода. При этом надо еще найти присадки к перекиси водорода (флегматизаторы), которые повышали бы ее стабильность.
На посадочном устройстве должны располагаться лабораторный и жилой отсек, оборудование, необходимое во время спуска и работы планетной части экспедиции на поверхности Марса, но ненужное при возвращении с поверхности на орбитальный корабль: это лобовой аэродинамический щит, используемый на основном участке торможения в атмосфере Марса, сбрасываемый после введения парашютной системы; парашютная система; лабораторный отсек для внутрикорабельных работ на поверхности; генераторы электроэнергии (скорее всего, изотопные); системы управления, связи, терморегулирования, включая подогреватели (скорее всего, опять же изотопные), необходимые во время марсианских ночей (да и марсианских дней тоже); оборудование и запасы систем жизнедеятельности (пища, кислород и вода); шлюз и скафандры для выходов из корабля; марсоход, позволяющий совершать достаточно далекие и длительные экспедиции по поверхности Марса, со своими системами электропитания, жизнедеятельности, связи, управления, трансмиссией, системой терморегулирования; исследовательское оборудование (атмосферные зонды, буровые установки, анализаторы, термостаты).
Тут возникает проблема объема лабораторного и жилого отсеков: ведь экспедиции придется работать на поверхности Марса от нескольких месяцев до полутора лет. Это означает, что нужно будет иметь десятки кубометров объема и отдельные каюты.
Сколько человек должно высаживаться на поверхность Марса? Естественно было бы в районе посадки и на марсоходе вести работы параллельно. Тогда экипаж экспедиционного корабля должен состоять из четырех человек (в каждой команде по два человека - для дублирования друг друга). Если стремиться к минимуму, то можно ограничиться двумя космонавтами, которые могли бы и работать на месте посадки, и совершать поездки на марсоходе. Последний вариант кажется не очень убедительным: лететь за тридевять земель и ограничиться минимальной деятельностью!? Да и безопасность такого варианта вызывает сомнения. Но возможен компромисс: иметь не один, а два марсианских экспедиционных корабля один с большим лабораторным отсеком для работ в районе посадки и другой с марсоходом.
Допустим, экспедиционный корабль стартует с поверхности Марса без посадочного устройства. При этом в его состав, помимо взлетной ракетной системы, должны входить кабина, аппаратура управления, навигации и сближения, аппаратура связи, телеметрических измерений, системы терморегулирования, электропитания (скорее всего, на химических источниках тока: время автономного полета без посадочного устройства мало), средства обеспечения жизнедеятельности экипажа (на запасах - по той же причине), стыковочное устройство.
Проблема связи планетного корабля с орбитальным может оказаться сложной из-за вращения Марса относительно плоскости орбиты орбитального корабля, так как они будут находится в прямой видимости друг друга не чаще одного-двух раз в сутки (если только плоскость базовой орбиты не близка к плоскости экватора). Связь между орбитальным и планетным кораблями, в лучшем случае только раз в сутки, едва ли можно будет признать удовлетворительной. Дело представляется еще более сложным, если вспомнить о необходимости связи между планетным кораблем и марсоходом после того, как марсоход уедет за горизонт от планетного корабля. Проблема могла бы быть решена, если оставить орбитальный корабль на марсостационарной орбите. Такая орбита должна быть в плоскости марсианского экватора на высоте порядка 17 тысяч километров над поверхностью Марса. При этом орбитальный корабль висел бы неподвижно над поверхностью Марса, и его положение на такой марсостационарной орбите можно было бы выбрать над точкой высадки планетной экспедиции. Тогда естественным образом обеспечивалась бы непрерывная связь орбитального корабля с планетным кораблем и с марсоходом.
Объем кабины экспедиционного корабля может быть для двух человек достаточно малым - порядка 3-4 кубических метров.
Проработки конструктивной схемы, характеристик оборудования, двигательных установок позволяют оценить массу планетного корабля (включая топливо) с экипажем из двух человек в пределах 50 тонн.
Для орбитального корабля и связанных с ним проблем коррекций траектории полета к Марсу и выведения с орбиты спутника Марса на траекторию полета к Земле такой определенности, как для планетного, нет.
Можно предложить два варианта решения задач выведения экспедиции на траекторию полета к Марсу и возвращения к Земле: использование электрореактивных и жидкостных реактивных двигателей.
Главное преимущество использования электрореактивных двигателей состоит в том, что оно позволяет на основных участках полета сократить в несколько раз расход топлива. Именно поэтому, когда вечерами, еще в период разработки "Востоков", мы размышляли над конструкцией и схемой кораблей марсианской экспедиции, то выбрали электрореактивные двигатели как основные. Кому первому пришла в голову мысль об использовании этих двигателей, вспомнить, наверное, сейчас уже и невозможно. Точно помню, что не мне. Возможно, кому-то из нашей группы, а может быть, из группы Максимова (они рассматривали корабль для пролета мимо Марса с использованием электрореактивных двигателей, правда, зачем пролетать мимо Марса - загадка еще более сложная, чем загадка необходимости экспедиции на Марс) попалась на глаза статья из какого-то журнала о целесообразности использования электрореактивных двигателей для межпланетных полетов. А дальше, скорее всего, идея распространилась и нашла своих сторонников и у нас.
Читать дальшеИнтервал:
Закладка: