Геннадий Горелик - Кто изобрел современную физику? От маятника Галилея до квантовой гравитации
- Название:Кто изобрел современную физику? От маятника Галилея до квантовой гравитации
- Автор:
- Жанр:
- Издательство:АСТ: CORPUS
- Год:2013
- Город:Москва
- ISBN:978-5-17-080251-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Геннадий Горелик - Кто изобрел современную физику? От маятника Галилея до квантовой гравитации краткое содержание
Современная наука родилась сравнительно недавно — всего четыре века назад, в эпоху Великой научной революции. Причины этой революции и отсутствие ее неевропейских аналогов до сих пор не имели признанного объяснения. А радикальность происшедшего ясна уже из того, что расширение и углубление научных знаний ускорились раз в сто.
Эта книга рассказывает о возникновении новых понятий науки, начиная с изобретения современной физики в XVII веке и до нынешних стараний понять квантовую гравитацию и рождение Вселенной. Речь идет о поворотных моментах в жизни науки и о драматических судьбах ее героев, среди которых — Г. Галилей, И. Ньютон, Дж. Максвелл, М. Планк, А. Эйнштейн, Н. Бор, А. Фридман, Ж. Леметр, М. Бронштейн, Л. Ландау, Г. Гамов, А. Сахаров и др.
По словам академика РАН, лауреата Нобелевской премии В.Л. Гинзбурга, Геннадий Горелик «является выдающимся историком физики. Он доказал это своими статьями и книгами, последняя из которых посвящена биографии А.Д. Сахарова в контексте советско-американской истории водородной бомбы».
Кто изобрел современную физику? От маятника Галилея до квантовой гравитации - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Гораздо короче надпись на статуе Ньютона в Колледже Св. Троицы, в Кембридже, где он учился и работал:
Умом он превзошел весь род людской.
Это за 17 веков до Ньютона сказал римский поэт-философ Лукреций Кар о греческом философе Эпикуре, жившем еще тремя веками раньше.
Какое отношение такие древности имеют к новой физике? Они говорят о свободе мысли в Британии, а значит, и о свободе научной мысли. Ведь Эпикур знаменит своим атеистическим мировоззрением, и то, что в Кембриджском университете процитировали хвалебное слово одного атеиста о другом, говорит об интеллектуальном просторе для студентов, одним из которых — двумя веками позже Ньютона — стал 19-летний Джеймс Максвелл. Простор для свободы мысли в Великой Британии можно ощутить еще яснее, вспомнив, что сам выпускник Колледжа Св. Троицы, удостоенный статуи, отверг общепринятый догмат Троицы, а его коллега и друг Хэли (Галлей) был назначен королевским астрономом, несмотря на свой атеизм.
Что думал о Троице Максвелл, неизвестно, но ему, как и Ньютону, интереснее всего в жизни были две великие книги, о которых говорил Галилей, — Книга Природы и Библия. Родители Максвелла принадлежали к разным ветвям протестантизма, в детстве он бывал в обеих церквах, а совершеннолетним в Кембридже — без отрыва от учебы и науки — заново продумывал свое мировоззрение. Об этом 21-летний Джеймс писал своему другу:
Мой великий план — ничего не оставлять без исследования. Ничто не будет святой территорией с Неизменным Титулом, будь то положительным или отрицательным. <���…> Христианство — то есть религия Библии — это единственная форма веры, открывающая все для исследования. Только здесь все свободно. Можешь летать до краев мира и не найдешь иного Бога, кроме Автора Спасения. Можешь обыскать всю Библию и не найдешь текст, который остановит тебя в твоих исследованиях.
Среди бумаг Максвелла нашли молитву:
Боже Всемогущий, создавший человека по образу Твоему и сделавший его душой живой, чтобы мог он стремиться к Тебе и властвовать над Твоими творениями, научи нас исследовать дела рук Твоих, чтобы мы могли осваивать землю нам на пользу и укреплять наш разум на службу Тебе…
Как Максвелл, с подобным отношением к науке, принимал слова атеиста об атеисте на статуе Ньютона? Максвелл знал, что Эпикур связывал этику с физикой, а в понимании «природы вещей» исходил из идеи атомов — одной из самых загадочных по происхождению в истории науки. Идею эту высказал Демокрит за сотню лет до Эпикура и за два тысячелетия до первых ее экспериментальных подтверждений. Согласно Демокриту, все «вещи» состоят из мельчайших частиц — атомов (по-гречески «неделимые»), а их движение, соединение и разъединение дают все наблюдаемые явления. И не только тело человека, но и душа его состоит из особых атомов. Так что жизнь и смерть — лишь разные состояния атомных образований. Поэтому, учил Эпикур, смерти бояться не следует: когда я есть, ее нет, а когда она есть, нет меня.
Греческие атомисты не сумели доказать атомизм всего сущего, но Лукреций в своей научно-философской поэме «О природе вещей» привел наглядные доводы в пользу атомной гипотезы, показав заодно, что познание освобождает от страхов. Поэма Лукреция — это гимн разуму и познанию, что вполне соответствовало устремлениям Ньютона и Максвелла.
К тому же они знали, что античные атомисты жили в мире многобожия: в поэме Лукреция слово «бог» употребляется лишь во множественном числе. Античный атеизм отрицал именно многобожие, и можно понять почему: олимпийским богам нечего делать в мире атомов, закономерно движущихся в пустоте. Само понятие закономерности несовместимо с прихотями олимпийцев. Аполлон велит атому лететь направо, Артемида — налево, так кого слушать? Библейское же представление о едином Боге-законодателе в античный мир еще не проникло.
Атомная гипотеза привлекала и Галилея и Ньютона, хоть и не привела их к осязаемым достижениям. Но к середине двадцатого века достижений было уже столько, что физик Ричард Фейнман подытожил:
Если бы некий катаклизм уничтожил все научные знания и к грядущим поколениям дошло бы только одно утверждение, то какое, составленное из наименьшего количества слов, содержало бы наибольшую информацию? Думаю, атомная гипотеза: все вещи состоят из атомов — маленьких частиц, которые беспрерывно движутся, притягивая друг друга на некоем расстоянии и отталкивая при большом сжатии. В одной этой фразе огромное количество информации о мире, стоит лишь приложить немного воображения и подумать.
Первые физические доводы в пользу атомов появились в семнадцатом веке, когда возникла идея о том, что давление газа на стенку сосуда — это результат ударов атомов, составляющих газ и движущихся беспорядочно во всех направлениях. Такое движение атомов рождает также ощущение тепла: чем быстрее атомы движутся, тем горячее. Из этой идеи, однако, не удалось извлечь измеримых следствий, и верх взяла идея попроще: тепло — это невидимая жидкость, перетекающая от горячего тела к холодному при их контакте.
На помощь атомной физике пришли химики, которые в начале девятнадцатого века заметили, что вещества вступают в химические реакции в целочисленных пропорциях типа 1:1, 1:2, 1:3, 2:3 и тому подобные. Это дало основание предположить, что суть химических реакций — соединение атомов, которые почему-то соединяются лишь с определенным числом других атомов. Такие соединения атомов — минимальные количества химических веществ — назвали молекулами. В простейшем случае молекулой может быть и один атом. Но это все пока — молекулярная химия.
А молекулярная физика создавалась на глазах Максвелла и при активном его участии. В картине атомно-молекулярного движения особенно озадачивала беспорядочность. Ведь наука занимается как раз упорядоченностью мироустройства?! Максвелл сумел обнаружить упорядоченность в беспорядке, когда он максимален, и нашел подходящий математический язык, чтобы описать эту упорядоченность, — теорию вероятностей, или, как говорили раньше, исчисление вероятностей. До Максвелла это исчисление применяли лишь к азартным играм и к скучной статистике. Хотя понятие вероятности, быть может, самое нужное в жизни, которая, как известно, — игра.
В любой порядочной игре не известен следующий ход соперника или судьбы. Но если, как советовал Фейнман, «приложить немного воображения и подумать», то в некоторых случаях можно оценить вероятности разных событий. К примеру, если в коробку с черными шарами в количестве Ч бросить Б белых шаров и хорошо перемешать, то вероятность вытащить из коробки наугад белый шар равна Б/(Ч+Б).
Если же вместо коробки с шарами взять емкость с газом, то движущиеся молекулы сами себя перемешивают, и поэтому можно спросить, какова вероятность того, что наугад выбранная молекула имеет такую-то скорость. Ответ Максвелла, или максвелловское распределение молекул газа по скоростям, — это первый физический закон, основанный на понятии вероятности.
Читать дальшеИнтервал:
Закладка: