Юрий Петров - Расследование и предупреждение техногенных катастроф. Научный детектив
- Название:Расследование и предупреждение техногенных катастроф. Научный детектив
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2007
- ISBN:5-9775-0037-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Петров - Расследование и предупреждение техногенных катастроф. Научный детектив краткое содержание
В книге рассказывается о знаменитых авариях и катастрофах, происходивших как в прошлом, так и в последние годы (таких как гибель подводной лодки "Курск", обрушение аквапарка "Трансвааль", катастрофы пассажирских самолетов и др.). Рассказано о методах расследования (и особенно — научного расследования) причин техногенных катастроф и о нелегкой борьбе за их предотвращение.
Расследование и предупреждение техногенных катастроф. Научный детектив - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
1. При численном решении систем дифференциальных уравнений первым этапом решения во всех этих пакетах является приведение исходной системы к системе n уравнений первого порядка путем эквивалентных преобразований. На втором этапе отыскивается решение преобразованной системы. Данный подход имеет под собой серьезные основания — он позволяет самые разнообразные системы уравнений решать одной программой. Если же первый этап пропустить, то пришлось бы создавать множество программ — потребовались бы, например, отдельные программы для системы, состоящей из одного уравнения третьего порядка и одного — первого порядка и для системы, состоящей из двух уравнений второго порядка и вообще потребовалось бы множество программ. Порядок, принятый в популярных пакетах, гораздо удобнее — но он приводит к ошибкам при встрече с «особыми» системами, например — с системой (21) при т = 1.
Пакет MATLAB приведет эту систему к системе уравнений первого порядка, выдаст ее решение и не заметит, что это решение не имеет смысла, поскольку даже сколь угодно малое, а значит — неизбежное на практике отклонение параметра т от расчетного значения т = 1 приведет к коренному расхождению между результатами расчета и реальным поведением объекта, и это может стать причиной аварии и даже катастрофы.
Для того чтобы не получилось подобных ошибок с возможными трагическими последствиями, нужно популярные пакеты прикладных программ дополнить совсем небольшими вспомогательными программами, которые выделят и отсеют «особые» системы уравнений и выделят соответствующие этим системам опасные объекты. Эти опасные объекты следует перепроектировать, изменить их структуру или параметры — изменить так, чтобы математическая модель проектируемого и рассчитываемого объекта перестала быть «особой». Тогда и аварий не будет. Все эти вопросы — и ошибки в пакетах, и методы предотвращения ошибок в расчетах — более подробно рассмотрены в книге [7].
2. Многочисленные расчетные алгоритмы, использующие цепочки эквивалентных преобразований, реализуемые в популярных прикладных программах, могут привести к ошибкам, если хотя бы одно из использованных преобразований изменит чувствительность решений к малым погрешностям округления. Более подробно о возникающих ошибках и несложных методах их предотвращения рассказано в работах [7], [8].
Не меньшее значение имеет и задача вычисления собственных значений (или собственных чисел) различных матриц. К необходимости решать эту математическую задачу приводят многие важные практические проблемы — такие, как вычисление частот собственных колебаний различных технических объектов, проверка условий возможного опасного резонанса между внешними воздействиями и собственными колебаниями, проверка устойчивости и многие другие проблемы. Возникают эти проблемы и в строительной механике, и при проверке прочности и устойчивости различных деталей и устройств, и в автоматическом управлении.
Поэтому во всех пакетах прикладных программ имеются широко и часто используемые программы вычисления собственных значений (собственных чисел). Однако при встрече с «особыми» системами уравнений (которые являются математическими моделями «особых» объектов), эти программы ведут пользователя к ошибочным заключениям: для «особых» объектов вычисление собственных значений смысла не имеет, поскольку они могут коренным образом измениться при малых, неизбежных на практике, неточностях в исходных данных. Поэтому любое проектное решение, принятое на основе вычисленных для «особых» объектов их собственных значений, может стать причиной последующих аварий и катастроф.
Поэтому пакеты прикладных программ обязательно должны быть дополнены небольшими дополнительными программами, которые выделяли бы «особые» системы уравнений, «особые» объекты, и предупреждали бы об этом пользователей компьютера. Эта дополнительная программа может, например, высветить на мониторе компьютера предостерегающую надпись: «Вы ведете расчет «особого» объекта, поведение которого может сильно меняться при малых неточностях в исходных данных. Советуем изменить параметры или структуру объекта и повторить расчет».
Виды «особых» матриц, для которых собственные значения очень чувствительны к малым неточностям исходных данных, и методы выделения «особых» матриц и «особых» объектов описаны в книгах [2, 3, 7].
3. В пакетах прокладных программ широко используются разнообразные алгоритмы, § 12. Опасные ошибки, обнаруженные в популярных пакетах прикладных программ, используют цепочки эквивалентных преобразований математической модели рассчитываемого объекта. При этом не уделяется должного внимания тому, что если хотя бы одно из использованных преобразований изменит чувствительность решений к малым неточностям исходных данных, или к погрешностям округления, то все решение окажется ошибочным. Примеры и методы предотвращения подобных ошибок исследовались Б. Г. Чертковым и рассмотрены в публикациях [7, 8].
4. Пакеты прикладных программ обязательно включают в себя программы вычисления решений систем линейных алгебраических уравнений различных порядков, поскольку к необходимости решать такие системы приводят очень многие практические задачи.
Простейшие системы уравнений — такие, например, как система
1,02х + у = 1,04 (22)
Х + У = 1 (23)
легко решаются вручную, но в практических задачах часто приходится иметь дело с системами, состоящими из двадцати, сорока и более уравнений, и здесь уже без компьютера и хорошей программы не обойтись. Применяемые программы решения систем уравнений, входящие в пакеты, используют, как правило, преобразования уравнений. Поскольку эти преобразования, разумеется, эквивалентны, то они позволяют вычислить правильные, истинные значения решений. Но многие важные свойства решений и в том числе — чувствительность решений к неизбежной ограниченной точности исходных данных — использованные эквивалентные преобразования могут изменить. Все это удобно показать на простом примере системы уравнений (22)—(23), решениями которой являются числа х = 2, у = -1 (что легко проверить подстановкой х = 2, у = — 1 в уравнения (22)—(23)).
Систему (22)—(23) — как и любые другие — удобно решать путем эквивалентных преобразований. Достаточно вычесть из уравнения (22) уравнение (23). Получим уравнение
0,02х = 0,04 (24)
не содержащее уже переменной у, которое вместе с уравнением (23) образует систему
Х + У = 1 (25)
0,02х = 0,04 (26)
Система (25)—(26) эквивалентна исходной системе (22)—(23), но решается гораздо проще: из (26) сразу следует х = 2, а подставив х = 2 в (25), получим у — — 1. Отметим, что тем же путем последовательного исключения переменных путем эквивалентных преобразований решают (следуя методу Гаусса) и системы, состоящие из большого числа уравнений. Просто число необходимых преобразований и вычислений очень быстро растет с ростом числа уравнений в системе, и поэтому для решения больших систем, часто встречающихся при проектировании, требуются компьютеры.
Читать дальшеИнтервал:
Закладка: