Юрий Петров - Расследование и предупреждение техногенных катастроф. Научный детектив
- Название:Расследование и предупреждение техногенных катастроф. Научный детектив
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2007
- ISBN:5-9775-0037-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Петров - Расследование и предупреждение техногенных катастроф. Научный детектив краткое содержание
В книге рассказывается о знаменитых авариях и катастрофах, происходивших как в прошлом, так и в последние годы (таких как гибель подводной лодки "Курск", обрушение аквапарка "Трансвааль", катастрофы пассажирских самолетов и др.). Рассказано о методах расследования (и особенно — научного расследования) причин техногенных катастроф и о нелегкой борьбе за их предотвращение.
Расследование и предупреждение техногенных катастроф. Научный детектив - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
и имеет, например, решения: х = 1; у = 2 или х = 2; у = 4 и многие другие. А вот при λ = 1 система (1)-(2) не нулевых решений не имеет. Это можно установить кропотливой проверкой, проверив все возможные значения параметра λ .
Заметим сразу, что задача вычисления собственных значений (разумеется, для систем гораздо более сложных, чем простейшая система (1) и (2)) имеет очень важное значение в технике. От величин собственных значений зависит устойчивость того или иного технического объекта, здания, сооружения, зависят частоты его колебаний и т. п.
Поэтому задаче вычисления собственных значений, различным методам их расчета, посвящены целые книги (например книга: Х. Д. Икрамов. Несимметричная проблема собственных значений, издательство «Наука», 1991 г., 240 страниц или: Уилкинсон Д. Х. Алгебраическая проблема собственных значений, издательство «Наука», 1970 г., 564 страницы и многие другие). И все методы используют эквивалентные преобразования. А то, что может произойти при эквивалентных преобразованиях, мы покажем на простейшем примере системы (1)-(2).
Вместо громоздкого перебора всех возможных значений λ , собственное значение легко найти эквивалентным преобразованием — подстановкой. Подставив значение переменной у из уравнений (2) в уравнение (1), мы получим:
(2λ 2+ 2)х = 2(λ 2+ λ)χ, (5)
Приведя подобные члены, получим:
(2λ - 2)χ = 0. (6)
Из уравнения (6) сразу следует, что не нулевые решения для х возможны лишь, если λ = 1.
Таким образом, эквивалентные преобразования позволили легко и просто найти (как и следовало ожидать) правильную величину собственных значений. Здесь все верно.
А теперь посмотрим, что получается при проверке корректности, при проверке зависимости собственных значений от малых изменений коэффициентов. После эквивалентных преобразований мы имеем дело с уравнением (6). В него входят два одинаковых коэффициента: двойка при λ и двойка как свободный член. Пусть свободный член изменился на 1% и стал равен 1,98. Тогда и собственное значение изменится на 1% и станет равным 1,01. То же самое произойдет, если на 1% изменится коэффициент при λ . Общий вывод: малым изменениям коэффициентов соответствуют малые изменения решения. Решение корректно.
А теперь (внимание!) исследуем корректность решения той же задачи до эквивалентных преобразований. Обратимся к исходным уравнениям (1) и (2) и посмотрим, что будет, если, например, коэффициент при λ 2в уравнении (1) изменится на 1% и станет равным 1,98, а система (1)-(2) перейдет в систему:
(1,98λ 2+ 2)х = 2у (7)
(λ 2+λ) = γ (8)
Отыскивая собственные значения для системы (7)-(8), мы убедимся, что их два: λ 1= 0,99019; λ 2=-100,99019 (с точностью до пятого знака после запятой). Можно проверить, что у системы (7)-(8) и при λ 1=0,99019, и при λ 2=—100,99019 действительно будут не нулевые решения х и у. Таким образом, для системы (1)-(2) решение задачи отыскания собственных значений — не корректно: уже при изменении одного из коэффициентов на 1% решение меняется коренным образом — вместо одного собственного значения появляется два, причем второе собственное значение резко отличается от первого (и даже имеет другой знак). Можно проверить, что если в системе (1)-(2) коэффициент при λ в уравнении (1) изменить не на 1%, а на 0,1% или даже на 0,01%, то все равно вместо одного собственного значения появятся два. Для системы (1)-(2) решение задачи о собственных значениях на самом деле не корректно — но мы не увидим этого, если будем исследовать корректность решения после эквивалентных преобразований системы, как это рекомендуют традиционные методы. Система (1)-(2) является особой системой — системой, у которой корректность решения изменяется после эквивалентных преобразований.
Для простой системы (1)-(2) все ясно и понятно: в уравнениях (1) и (2) коэффициенты при λ 2после эквивалентного преобразования взаимно сокращаются и исчезают, хотя именно их малые изменения в исходной системе приводят к большим изменениям собственных значений. В более сложных системах все сложнее, распутать причины и следствия очень не просто, но главное заключается в другом: даже на примере очень простой системы (1)-(2) мы показали, что эквивалентные преобразования могут изменять многие важные свойства математических моделей. Могут изменять корректность решения, могут изменять запасы устойчивости и т. д. Впервые все это было опубликовано в 1987 году, в книге [1] (номер в квадратных скобках соответствует номеру в списке литературы в конце брошюры), а более подробно — в книгах [2], [3].
§ 6. Следствия. Методы предотвращения катастроф
Теперь рассмотрим — какие следствия вытекают из открытий, сделанных с СПбГУ. Прежде всего — сразу получаем простое и логичное объяснение тайны катастрофы аквапарка «Трансвааль». Вполне возможно, что купол аквапарка оказался особым объектом, математическая модель которого изменяет корректность решений при эквивалентных преобразованиях — подобно математической модели в виде системы (1)-(2), которую мы рассмотрели в предыдущем разделе. Купол аквапарка проектировал Н. Канчели примерно в 2000 году. Он проводил расчет критических нагрузок по преобразованной модели, поскольку в 2000 году все методики строительных расчетов рекомендовали поступать именно так. В 2000 году никто из строителей еще не подозревал о существовании особых объектов, не понимал истинных свойств эквивалентных преобразований. Поэтому Н. Канчели с чистой совестью правильно и добросовестно применял общепринятые тогда методы расчета, а руководитель Мосгосэкспертизы А. Воронин, проверяя его расчеты, подтвердил, что они сделаны правильно и в полном соответствии с общепринятыми нормами и правилами, существующими в 2000 году. А то, что для особых объектов эти общепринятые нормы и правила неизбежно ведут к катастрофам и гибели людей — об этом в 2000 году никто из архитекторов и строителей еще не знал. Поэтому предъявление уголовных обвинений Н. Канчели и А. Воронину не поможет делу.
Ну хорошо, посадят их в тюрьму, и что — наша жизнь станет безопаснее? Нет, не станет. Если не уточнить методы и правила расчетов, то у другого архитектора, который на свою беду встретится с «особым» объектом, неизбежно все обрушится, и люди снова погибнут.
Для того чтобы избежать катастроф, нужно в правила расчетов внести дополнения — дополнения, вытекающие из открытий, сделанных в СПбГУ. Тогда аварий и катастроф — по крайней мере, тех, которые возникают из-за неполноты привычных методов расчета — больше не будет. Усовершенствованные методы расчета, позволяющие избежать аварий и катастроф, известны. Они опубликованы в книгах [1], [2], [3] (применительно к задачам строительной механики — в статье [12]). Да, эти методы немного сложнее привычных, поскольку требуют небольшой дополнительной проверки — не изменилась ли корректность решения при использованных эквивалентных преобразованиях. Необходимость дополнительных проверок, небольшой дополнительной работы расчетчика привела к тому, что усовершенствованные методы расчета до сих пор применяются мало. Дополнительную работу обычно делать не хочется, а «особые» объекты встречаются редко, что и позволяет легкомысленно надеяться на то, что все пронесет.
Читать дальшеИнтервал:
Закладка: