Вячеслав Воробьев - 12 тверских математиков

Тут можно читать онлайн Вячеслав Воробьев - 12 тверских математиков - бесплатно полную версию книги (целиком) без сокращений. Жанр: История, издательство Седьмая буква, год 2010. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    12 тверских математиков
  • Автор:
  • Жанр:
  • Издательство:
    Седьмая буква
  • Год:
    2010
  • Город:
    Тверь
  • ISBN:
    нет данных
  • Рейтинг:
    3.8/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Вячеслав Воробьев - 12 тверских математиков краткое содержание

12 тверских математиков - описание и краткое содержание, автор Вячеслав Воробьев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

С Тверской землёй связаны судьбы и деятельность видных российских учёных в разных отраслях науки. Вниманию читателей предлагается сборник биографических очерков о математиках, чьи труды стали достоянием фундаментальной науки, педагогики, нашли применение в технике и военном деле: Л.Ф. Магницком, С.Я. Румовском, Д.С. Чижове, Н.В. Маиевском, И.А. Вышнеградском, В.И. Смирнове, В.М. Брадисе, Г.М. Голузине, А.И. Маркушевиче, П.П. Коровкине, Н.М. Афанасьеве, Е.В. Золотове.

12 тверских математиков - читать онлайн бесплатно полную версию (весь текст целиком)

12 тверских математиков - читать книгу онлайн бесплатно, автор Вячеслав Воробьев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Само собой разумеется, что это ошибочное частное утверждение И.А. Вышнеградского не сказывается на фундаментальном значении всей его работы. Если кулоновское трение достаточно мало, а это часто на практике имеет место, все выводы И.А. Вышнеградского остаются в полной силе. Образцовый анализ этой «линеаризованной» задачи позволил И.А. Вышнеградскому сделать чёткие технические выводы и установить знаменитые «неравенства Вышнеградского», которые с тех пор кладутся в основу расчёта регуляторов. Эти неравенства были им наглядно представлены в виде так называемой «диаграммы Вышнеградского», вошедшей во многие, в том числе современные, учебники. По прямоугольным осям этой диаграммы отложены безразмерные величины, просто связанные с практическими, конструктивными параметрами машины и регулятора; диаграмма указывает области устойчивой и неустойчивой работы системы «машина—регулятор»; более того, она показывает в устойчивой области отдельно ту её часть, которая соответствует работе регулирующего устройства без всяких нежелательных колебаний.

Выводы И.А. Вышнеградского, сформулированные также в виде нескольких тезисов, были обращены непосредственно к инженерам и изобретателям, занимающимся проектированием и конструированием регуляторов, и содержали фундаментальные, практически крайне важные сведения о необходимых соотношениях между данными регулятора и данными машины, объяснившие, в частности, неудачу многих конструкций.

Эта работа И.А. Вышнеградского, появившаяся почти одновременно на нескольких языках, сразу сделалась предметом самого пристального внимания в Германии, Франции и Америке. Общепризнано её фундаментальное значение для современной теории регулирования, как и её влияние на почти все последующие работы по теории регулирования. Так, например, известный инженер Хорт, автор многих работ и книг по прикладной механике и теории колебаний и автор одного из немногих имеющихся в литературе обзоров по истории теории регулирования, прямо пишет, что эту работу «следует рассматривать как лежащую в основе современной теории регулирования».

Дальнейшее развитие машиностроения привело к усложнению схем автоматического регулирования, причём основное развитие теории регулирования шло по линии исследования «линеаризованных» задач, т.е. по линии обобщения результатов, полученных И.А. Вышнеградским. По просьбе знаменитого словацкого специалиста по паровым турбинам Стодола, работы которого по теории регулирования носят прямые следы влияния Вышнеградского, немецкий математик Гурвиц в 1895 году рассмотрел общий случай линеаризованных задач теории регулирования и получил «неравенства Гурвица», являющиеся обобщением «неравенств Вышнеградского». Эти «неравенства Гурвица» или, как их иногда называют, «неравенства Рауса—Гурвица», и сейчас составляют основу большинства расчётов теории регулирования.

После смерти И.А. Вышнеградского было обнаружено, что существует работа знаменитого английского физика Максвелла, опубликованная ещё в 1868 г., в которой Максвелл занимался той же задачей, которую поставил и решил И.А. Вышнеградский. В своей работе Максвелл пришёл к тем же математическим условиям правильной работы регулятора, что и Вышнеградский, но у Максвелла отсутствуют те последовательные и отчётливые технические выводы, которые составляют замечательную особенность работы Вышнеградского.

Вторая работа И.А. Вышнеградского «О регуляторах непрямого действия» (1878), отличающаяся, как и первая, последовательной динамической точкой зрения и интересная тем, что здесь делается попытка рассматривать нелинейные задачи теории регулирования, имеет меньшее значение. Но и эта работа, посвящённая таким регуляторам непрямого действия, конструкции которых быстро вышли из употребления, несомненно, оказала определённое влияние на последующие работы по регулированию.

Математические способности Вышнеградского описаны в воспоминаниях председателя Кабинета министров России С.Ю. Витте; «Вышнеградский был большим любителем вычислений, его хлебом не корми — только давай ему различные арифметические исчисления. Поэтому он всегда сам делал все арифметические расчёты и вычисления по займам. У Вышнеградского вообще была замечательная память на цифры, и я помню, когда мы с ним как-то раз заговорили о цифрах, он сказал мне, что ничего он так легко не запоминает, как цифры. Взяли мы книжку логарифмов, он мне и говорит: — Вот откройте книжку и хотите — я прочту громко страницу логарифмов, а потом, — говорит, — вы книжку закроете и я вам все цифры скажу на память. И, действительно, взяли мы книжку логарифмов, я открыл, 1-ю страницу: Вышнеградский ее прочёл (там, по крайней мере, 100, если не больше, цифр) и затем, закрыв страницу, сказал мне на память все цифры (я следил за ним по книжке), не сделав ни одной ошибки».

Сын знаменитого математика, механика и государственного деятеля Александр Иванович Вышнеградский, предприниматель, крупный чиновник, композитор, эмигрировал после Октябрьской революции, и ныне его потомки живут в Германии. Внучка Ивана Алексеевича Вышнеградского (дочь его дочери Варвары) Александра Васильевна Тимирёва была невестой и женой адмирала Александра Васильевича Колчака, и после тридцати с лишним лет тюрем и лагерей её отправили в 1950-х годах «на 101-й километр» — в посёлок торфоразработчиков Озерки неподалёку от Твери, ныне в Конаковском районе. А её сын художник Владимир Тимирёв был расстрелян на Бутовском полигоне в 1938 году как пасынок Колчака по обвинению в шпионаже в пользу Германии и подготовке диверсий.

В.М. Воробьёв. ВЛАДИМИР ИВАНОВИЧ СМИРНОВ

Академик Владимир Иванович Смирнов родился 10 июня 1887 года в Санкт-Петербурге в семье Иоанна Николаевича Смирнова, протоиерея Лицейской церкви, преподававшего в 1870—1900 годах Закон Божий и гражданское право в Александровском лицее и имевшего при лицее квартиру. Иоанн Николаевич — уроженец города Весьегонска Тверской губернии, где проживали его близкие родственники, и куда многократно приезжал в разные периоды своей жизни его сын академик Владимир Смирнов.

Владимир Иванович окончил в 1910 году Санкт-Петербургский университет. Отечественные историки естествознания и прикладных дисциплин единодушно отмечают необычайно важную роль, которую сыграл физико-математический факультет (он включал тогда все естественнонаучные дисциплины) в деле подготовки выдающихся отечественных специалистов, занявших впоследствии руководящее положение в науке. Достаточно назвать имена Ивана Петровича Павлова или Александра Степановича Попова. Однако ни одна дисциплина не достигла в Петербургском университете таких высот, как математика, и ни одно научное направление не получило такого всемирного признания, как Петербургская математическая школа. Когда В.И. Смирнов поступил в университет, П.Л. Чебышёва уже не было в живых, но его преемники оказались вполне достойными своего великого предшественника. В расцвете своих сил были тогда А.М. Ляпунов, А.А. Марков, В.А. Стеклов. Имена их золотыми буквами вписаны в историю русской науки. Непосредственным учителем В.И. Смирнова был академик В.А. Стеклов, впоследствии первый вице-президент Академии наук СССР. Вокруг него сгруппировались наиболее одарённые и инициативные студенты, хотя учителем он был необычайно требовательным. Высоко ценя способности своих талантливых учеников, в которых он безошибочно угадывал будущих незаурядных учёных, Стеклов, тем не менее, требовал от них глубокого изучения трудов корифеев математической науки. На первый взгляд, это могло показаться капризом маститого профессора, но его ученики прекрасно понимали значение этого требования своего учителя. В.И. Смирнов многие и многие годы был благодарен своему требовательному учителю, которого постоянно вспоминал с необычайной теплотой. Имя В.А. Стеклова носит ныне Математический институт Российской академии наук.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Вячеслав Воробьев читать все книги автора по порядку

Вячеслав Воробьев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




12 тверских математиков отзывы


Отзывы читателей о книге 12 тверских математиков, автор: Вячеслав Воробьев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x