Джон Лайонз - Введение в теоретическую лингвистику

Тут можно читать онлайн Джон Лайонз - Введение в теоретическую лингвистику - бесплатно полную версию книги (целиком) без сокращений. Жанр: Языкознание, издательство ПРОГРЕСС, год 1978. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Введение в теоретическую лингвистику
  • Автор:
  • Жанр:
  • Издательство:
    ПРОГРЕСС
  • Год:
    1978
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4.33/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Джон Лайонз - Введение в теоретическую лингвистику краткое содержание

Введение в теоретическую лингвистику - описание и краткое содержание, автор Джон Лайонз, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга известного английского ученого Джона Лайонза «Введение в теоретическую лингвистику» дает широкую картину основных направлений, бытующих в современной науке о языке, а также знакомит читателя с основными проблемами языкознания. При этом автор учитывает как положения традиционной лингвистики, так и новейшие теоретические идеи.

Книга Джона Лайонза представляет интерес для лингвистов всех профилей, а также для специалистов по психологии, социологии, вычислительной математике и другим наукам. Она может быть использована в качестве учебного пособия для филологических факультетов университетов и педагогических вузов.

Перевод с английского языка под редакцией и с предисловием В. А. ЗВЕГИНЦЕВА

Переводы: Н. Н. ПЕРЦОВОЙ (глава 1), Т. В. БУЛЫГИНОЙ (главы 2—6), Б. Ю. ГОРОДЕЦКОГО (главы 7—10 и примечания).


Введение в теоретическую лингвистику - читать онлайн бесплатно полную версию (весь текст целиком)

Введение в теоретическую лингвистику - читать книгу онлайн бесплатно, автор Джон Лайонз
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2.4.3. БИНАРНЫЕ СИСТЕМЫ

Количество информации обычно измеряется в битах (этот термин происходит от англ. binary digit 'двоичный знак'). Всякая единица с вероятностью появления 1/2 содержит один бит информации; всякая единица с вероятностью 1/4 несет 2 бита информации, и так далее. Удобство такого измерения количества информации станет очевидным, если мы обратимся к практической задаче «кодирования» множества единиц (сначала предположим, что вероятности их появления равны) группами двоичных знаков. В предыдущем разделе мы видели, что каждый элемент множества из восьми единиц может быть реализован отдельной группой из трех двоичных знаков (см. § 2.3.8). Это определяется связью между числом 2 ( основанием двоичной системы исчисления) и 8 (количеством единиц, которые требуется различать): 8 = 2 3. В более общем виде, если N — это число единиц, которые следует различать, a m — это число позиций контраста в группах двоичных знаков, требуемых для их различения, то N = 2 m . Связь между числом парадигматических контрастов на «высшем» уровне ( N ) и синтагматической длиной групп элементов «низшего» уровня ( m ), таким образом, логарифмическая: m = log 2 N . (Логарифм числа есть степень, в которую следует возвести основание числовой системы, чтобы получить данное число. Если N = x m , то m = log x N 'если N равняется х в степени m , то m равняется логарифму N по основанию x '. Напомним, что в десятичной арифметике логарифм 10 равен 1, логарифм 100 равен 2, логарифм 1000 равен 3 и т. д., т. е. log 10 10 = 1, log 10 100 = 2, log 10 1000 = 3 и т. д. Если бы теория информации основывалась на десятичной, а не на двоичной системе измерения, то было бы удобнее определять единицу информации в терминах вероятности 1/10. Читателю должно быть ясно, что приведенное здесь равенство N = 2 m — это частный случай равенства N = ррр 3, ..., р m , введенного в § 2.3.8. Равенство N = 2 m справедливо, если в каждой позиции синтагматической группы в парадигматическом контрасте находится одно и то же число элементов.

Количество информации измеряется обычно в битах, просто потому, что многие механические системы для хранения и передачи информации действуют на основе бинарного принципа: это системы с двумя состояниями . Например, информацию можно закодировать на магнитной ленте (для обработки с помощью цифровой ЭВМ) как последовательность намагниченных и ненамагниченных позиций (или групп позиций): каждая позиция находится в одном из двух возможных состояний и может, таким образом, нести один бит информации. Кроме того, информацию можно передавать (как, например, в азбуке Морзе) в виде последовательности «импульсов», каждый из которых принимает одно из двух значений: короткий или длинный по продолжительности, положительный или отрицательный по электрическому заряду и т. п. Всякая система, использующая «алфавит», состоящий более чем из двух элементов, может быть перекодирована в бинарную систему у источника передачи и снова перекодирована в первоначальный «алфавит», когда сообщение получено по месту назначения. Это имеет место, например, при передаче сообщений по телеграфу. То, что информационное содержание должно измеряться с помощью логарифмов с основанием 2, а не логарифмов с каким-либо другим числовым основанием, есть следствие того факта, что инженеры связи обычно работают с системами с двумя состояниями. Что касается вопроса об уместности применения принципа двоичного «кодирования» именно при исследовании языка в нормальных условиях «передачи» от говорящего к слушающему, то он вызывает значительные разногласия среди лингвистов. Не подлежит сомнению, что многие наиболее важные фонологические, грамматические и семантические различия бинарны, как мы увидим в последующих главах; мы уже видели, что один из двух членов бинарной оппозиции может рассматриваться как положительный, или маркированный, а другой — как нейтральный, или немаркированный (см. § 2.3.7). Мы не будем вдаваться здесь в обсуждение вопроса, можно ли свести все лингвистические единицы к комплексам иерархически упорядоченных бинарных «выборов». Тот факт, что многие единицы (на всех уровнях языковой структуры) сводимы к ним, означает, что лингвисту следует приучиться мыслить в терминах бинарных систем. В то же время следует отдавать себе отчет в том, что фундаментальные идеи теории информации совершенно не зависят от частных предположений относительно бинарности.

2.4.4. НЕРАВНЫЕ ВЕРОЯТНОСТИ

Поскольку каждый двоичный знак несет только один бит информации, группа из m двоичных знаков может нести максимум m битов. До сих пор мы предполагали, что вероятности различаемых таким образом единиц высшего уровня равны. Теперь рассмотрим более интересный и более обычный случай, когда эти вероятности не равны. Для простоты возьмем множество из трех единиц, а , b и с , со следующими вероятностями: р а = 1/2, р b = 1/4, p с = 1/4. Единица а несет 1 бит, а b и с несут по 2 бита информации каждая. Их можно закодировать в двоичной системе реализации, как а : 00, b : 01 и с : 10 (оставив 11 незанятым). Но если бы знаки передавались в последовательности по некоторому каналу связи и передача и получение каждого знака занимали бы один и тот же отрезок времени, было бы неразумным принимать столь неэффективное условие кодирования. Ведь для а требовалась бы такая же мощность канала, как для b и для с, хотя оно несло бы вдвое меньше информации. Более экономичным было бы закодировать а с помощью одного знака, скажем 1, и отличать b и с от а , закодировав их противоположным знаком — 0 — в первой позиции; b и с тогда отличались бы друг от друга во второй позиции контраста (которая, конечно, пуста для а ). Итак, а : 1, b : 00 и с : 01. Это второе соглашение более экономичным образом использует пропускную способность канала, так как оно увеличивает до предела количество информации, которое несет каждая группа в один или два знака. Поскольку на передачу а , которое встречается вдвое чаще, чем b и c , тратится вдвое меньше времени, данное решение позволило бы в кратчайшее время передать наибольшее число сообщений (исходя из предположения, что эти сообщения достаточно длинны или достаточно многочисленны, чтобы отражать средние частоты появления). В действительности эта простая система представляет собой теоретический идеал: каждая из трех единиц a , b и с несет целое число битов информации и реализуется в субстанции именно этим числом различий.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джон Лайонз читать все книги автора по порядку

Джон Лайонз - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Введение в теоретическую лингвистику отзывы


Отзывы читателей о книге Введение в теоретическую лингвистику, автор: Джон Лайонз. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x