Дэвид Шпигельхалтер - Искусство статистики. Как находить ответы в данных
- Название:Искусство статистики. Как находить ответы в данных
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2021
- Город:Москва
- ISBN:9785001692508
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дэвид Шпигельхалтер - Искусство статистики. Как находить ответы в данных краткое содержание
Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики. На русском языке публикуется впервые.
Искусство статистики. Как находить ответы в данных - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Но что такое изучаемая совокупность? Мы располагаем данными обо всех больницах и всех детях, поэтому нет большей группы, из которой они могут быть взяты. Хотя идея генеральной совокупности обычно вводится в курсах статистики довольно буднично и вскользь, наш пример показывает, что это сложное и запутанное понятие, требующее подробного изучения, поскольку на нем основаны многие важные идеи.
Существуют три вида генеральных совокупностей, из которых мы можем делать выборки – вне зависимости от того, являются ли источниками данных люди, сделки, деревья или что-либо другое.
• Буквальная совокупность. Это идентифицируемая группа, откуда мы, к примеру, выбираем случайным образом человека при опросе. Или группа людей, для которых можно провести измерения, и, хотя мы на самом деле не выбираем наугад, у нас есть данные от добровольцев. Например, мы можем рассматривать людей, угадавших число драже в банке, как выборку из совокупности всех любителей математики, которые смотрят видеоролики на YouTube.
• Виртуальная совокупность. Мы часто проводим измерения с помощью каких-либо устройств, скажем, измеряем кровяное давление или уровень загрязнения воздуха. Мы знаем, что всегда можем сделать еще несколько измерений и получить немного другие результаты – вам это прекрасно известно, если вы когда-нибудь повторно измеряли артериальное давление. Близость полученных результатов зависит от точности прибора и неизменности обстановки. Мы могли бы думать об этом как о получении наблюдений из некой виртуальной совокупности всех измерений, которые могли бы сделать, если бы имели достаточно времени.
Метафорическая совокупность. В этом случае никакой большей совокупности нет вообще. Это необычное понятие. Мы действуем так, будто наши данные получены случайным образом из какой-то большей совокупности, хотя это не так. Например, в случае детей, перенесших операцию на сердце, у нас не было никакой выборки, а были полные данные, и ничего сверх них мы собрать уже не могли. Подумайте о количестве ежегодно совершаемых убийств, результатах экзаменов для определенного класса или данных обо всех странах мира – ни в одном из этих случаев мы не можем считать имеющиеся данные выборкой из какой-то фактической совокупности.
Идея метафорической совокупности требует осмысления: возможно, предпочтительнее думать, что наши наблюдения берутся из некоего воображаемого пространства возможностей. Например, мировая история такая, какая есть, но мы можем представить, что она развивалась по совершенно иному сценарию, а мы просто оказались в одном из ее возможных состояний. Это множество альтернативных историй можно считать метафорической совокупностью. А если конкретнее, то, когда мы рассматривали детские операции в Соединенном Королевстве за 2012–2015 годы, у нас были полные данные о детях за этот период: мы знали и число смертей, и число выживших. Однако мы можем себе представить гипотетические истории, в которых выжили бы другие дети вследствие непредвиденных обстоятельств, которые мы склонны именовать «случайностью».
Должно быть очевидно, что в статистике выборка редко составляется буквально наугад и что более распространены ситуации, когда потенциально доступны полные данные. Тем не менее крайне полезно придерживаться концепции воображаемой генеральной совокупности, из которой взята наша «выборка», поскольку в этом случае мы можем использовать все математические методы, разработанные для составления выборок из реальных генеральных совокупностей.
Лично мне больше нравится действовать так, будто происходящее вокруг – результат случайного выбора из всех вероятных сценариев. От нас зависит, будем ли мы верить, что это действительно случайность, или воля Божья или богов, или какая-то иная теория причинности: для математики разницы нет. Это всего лишь одно из расширяющих кругозор требований при работе с данными.
Выводы
• Для перехода от данных к выборке, а затем к изучаемой и далее к целевой совокупности требуются индуктивные умозаключения.
• На каждом из этапов могут возникать ошибки и проблемы.
• Лучший способ перейти от выборки к исследуемой совокупности – обеспечить случайность выборки.
• Генеральную совокупность можно представлять и как группу объектов, и как отображение вероятностного распределения для случайного наблюдения, полученного из этой совокупности.
• Описывать совокупности можно с помощью тех же характеристик, что и выборки.
• Часто данные не являются выборкой из буквальной совокупности. Когда в выборку входят все данные, мы можем вообразить, что они взяты из метафорической совокупности событий, которые могли бы случиться, но не произошли.
Глава 4. Причины и следствия
Повышает ли поступление в университет риск развития опухоли мозга?
Эпидемиологияизучает, как и почему возникают и распространяются заболевания, при этом скандинавские страны – мечта эпидемиолога. А все потому, что в них каждый человек имеет личный идентификационный номер, который используется при регистрации во всех сферах: здравоохранение, образование, налогообложение и прочие. Это позволяет исследователям комплексно изучать различные аспекты жизни людей, что невозможно сделать (и, наверное, не всегда целесообразно) в других государствах.
Одно масштабное исследование, проведенное более чем на 4 миллионах шведов и шведок, в рамках которого связывались сведения о налогообложении и здоровье за 18 лет, установило, что у людей с более высоким социально-экономическим положением чаще диагностировали опухоль головного мозга. Это было одно из тех солидных, но весьма неинтересных исследований, которые обычно не привлекают особого внимания, поэтому специалист по связям с общественностью посчитал, что в пресс-релизе гораздо лучше написать так: «Высокий уровень образования связан с повышенным риском развития опухоли головного мозга», хотя работа посвящалась скорее социально-экономическому положению, чем образованию. Однако к тому времени, когда результаты были представлены широкой публике, помощник редактора одной из газет выдал классический заголовок: «Почему поступление в университет повышает риск развития опухоли мозга» [85].
Такой заголовок встревожил бы любого, кто имеет высшее академическое образование. Но стоит ли на самом деле беспокоиться? Исследование основывалось на всей доступной генеральной совокупности, а не на выборке, поэтому мы с уверенностью можем заключить, что у более образованных людей действительно немного чаще выявляли опухоль головного мозга. Но неужели интенсивные нагрузки в библиотеке действительно перегревали мозг и вели к неблагоприятным мутациям клеток? Несмотря на газетный заголовок, я в этом сомневаюсь. Как, собственно, и авторы статьи, которые добавили: «Потенциальным объяснением такого результата могут быть полнота регистрации рака и ошибка выявления». Другими словами, люди с более высоким уровнем образования с большей вероятностью пройдут обследование, а значит, опухоли будут регистрироваться чаще (пример того, что в эпидемиологии называется ошибкой обращаемости [86]).
Читать дальшеИнтервал:
Закладка: