Дэвид Шпигельхалтер - Искусство статистики. Как находить ответы в данных
- Название:Искусство статистики. Как находить ответы в данных
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2021
- Город:Москва
- ISBN:9785001692508
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дэвид Шпигельхалтер - Искусство статистики. Как находить ответы в данных краткое содержание
Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики. На русском языке публикуется впервые.
Искусство статистики. Как находить ответы в данных - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Хотя оба источника, по логике, должны быть примерно одинаковыми, на практике они демонстрировали существенное расхождение: за 1991–1995 годы HES указывала 62 смерти при 505 операциях на открытом сердце (14 %), а CSR – 71 смерть при 563 операциях (13 %). В нашем распоряжении было еще не менее пяти дополнительных местных источников сведений – от анестезиологической документации до собственных журналов хирургов. Бристоль располагал множеством данных, но ни один из источников не мог считаться истинным и никто не брал ответственность за анализ результатов хирургических вмешательств и принятие мер.
Мы подсчитали, что если бы в бристольской больнице средний риск для пациентов был таким же, как в целом по Великобритании, то за указанный период было бы зафиксировано 32 смерти, а не 62 фактических, что мы определили как «30 избыточных смертей в период с 1991 по 1995 год» [25]. Цифры менялись в зависимости от источников данных, и может показаться необычным, что мы даже не смогли установить основные факты о количестве операций и их результатах, хотя нынешние системы регистрации стоило бы улучшить.
Наши выводы широко освещались в прессе, и бристольское расследование привело к значительному изменению отношения к отслеживанию ситуации в здравоохранении: контроль над медициной больше не доверяли ей самой. Появились механизмы для публичного представления данных о выживаемости в больницах, хотя, как мы сейчас увидим, даже способ отображения может влиять на их восприятие аудиторией.
Данные, фиксирующие, произошли какие-то события или нет, известны как бинарные (двоичные) данные,поскольку они могут выражаться только двумя значениями, например да или нет, болен или здоров. Из набора бинарных данных можно извлечь обобщенную информацию – общее количество и доля случаев, когда событие произошло.
В этой главе подчеркивается важность способа представления статистических данных. В каком-то смысле мы переходим к последней стадии цикла PPDAC, на которой делаются заключения; и хотя форма их подачи традиционно не считается значимой темой в статистике, растущий интерес к визуализации данных отражает изменения в данном вопросе. Поэтому в этой и следующей главах мы сосредоточимся на способах отображения данных, позволяющих быстро уловить суть происходящего без детального анализа. И начнем с рассмотрения альтернативных способов их представления, которые – во многом благодаря бристольскому расследованию – теперь стали общедоступны.
В табл. 1.1 отображены результаты лечения примерно 13 тысяч детей, перенесших операцию на сердце в Соединенном Королевстве Великобритании и Северной Ирландии в 2012–2015 годах [26]. В течение 30 дней после операции умерли 263 ребенка, и, безусловно, каждая из смертей – трагедия для семьи. Для них будет слабым утешением то, что со времени бристольского расследования показатель выживаемости значительно повысился и теперь составляет 98 %, поэтому у семей с детьми, нуждающимися в операции на сердце, более обнадеживающие перспективы.
Таблица 1.1
Результаты операций на сердце у детей в больницах Соединенного Королевства Великобритании и Северной Ирландии за 2012–2015 годы с точки зрения выживаемости в течение 30 дней после операции

Таблицу можно считать видом графического представления данных, где для привлекательности и удобочитаемости требуется правильно подобрать цвет, шрифт и слова. На эмоциональную реакцию аудитории может также влиять выбор столбцов для отображения. В табл. 1.1 показаны данные об умерших и выживших, однако в США сведения о результатах операций представлены в виде показателя смертности , а в Великобритании – в виде показателя выживаемости. Такая форма подачи называется эффектом фрейминга, и он интуитивно понятен и хорошо документирован: например, «смертность – 5 %» звучит и воспринимается хуже, чем «выживаемость – 95 %». Указание фактического количества смертей и их процентной доли также может создать впечатление о повышении риска, поскольку эту величину можно представить как группу реальных людей.
Классическим примером того, как фрейминг меняет эмоциональное восприятие какого-нибудь показателя, стали плакаты, появившиеся в 2011 году в лондонском метро, которые гласили, что «99 % молодых лондонцев не совершают серьезных насильственных преступлений». Предполагалось, что такие заявления будут способствовать спокойствию пассажиров. Однако мы могли бы изменить их эмоциональное воздействие с помощью двух простых вещей. Во-первых, с помощью заявления, что 1 % молодых лондонцев совершают серьезные насильственные преступления. Во-вторых, учитывая, что население Лондона составляет около 9 миллионов человек, возраст примерно 1 миллиона из них – от 15 до 25 лет, и если считать эту категорию молодежью, то получается, что в городе проживает 1 % от миллиона, или 10 тысяч агрессивно настроенных молодых людей. А такая цифра звучит удручающе и уж вовсе не ободряет. Обратите внимание на две хитрости, используемые для манипулирования воздействием таких статистических данных: переход от позитива к негативу и превращение процентной доли в фактическое количество людей.
В идеале – если мы хотим беспристрастной подачи информации – нужно давать как положительные, так и отрицательные значения, хотя даже порядок столбцов в таблице может влиять на интерпретацию. Необходимо тщательно продумывать и порядок строк. Например, в табл. 1.1больницы распределены в порядке увеличения количества проведенных операций, но если их упорядочить, например, в порядке убывания смертности (с наибольшим значением в верхней части таблицы), то это может создать впечатление, что перед нами правильный и важный способ сравнения больниц. Такие рейтинговые таблицы любят средства массовой информации и некоторые политики, однако они могут вводить в заблуждение, причем не только потому, что различия бывают вызваны случайными отклонениями, но и потому, что больницы принимают пациентов с заболеваниями разной степени тяжести. Например, по данным табл. 1.1можно заподозрить, что больница в Бирмингеме – одна из крупнейших и наиболее известных детских больниц – берет наиболее тяжелые случаи. Поэтому было бы несправедливо говорить, что у нее не самые впечатляющие показатели выживаемости [27].
Показатели выживаемости можно представить и в виде горизонтальной столбчатой диаграммы, как на рис. 1.1. Главное – решить, где начинать горизонтальную ось: если с 0 %, то полосы займут практически всю ширину диаграммы, что покажет необычайно высокий уровень выживаемости во всех больницах, но полосы между собой будет трудно различить. Гораздо хуже старый трюк, использующийся для обмана, – начать, например, с 95 %. Тогда все больницы будут резко отличаться, даже если на самом деле разница в показателях объясняется чистой случайностью.
Читать дальшеИнтервал:
Закладка: