Карл Левитин - Геометрическая рапсодия
- Название:Геометрическая рапсодия
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:1984
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Карл Левитин - Геометрическая рапсодия краткое содержание
Плоское и объемное, свойства кристаллов и правильных тел, симметрия, замкнутость и бесконечность Вселенной — эти темы-мелодии сливаются в книге в некий гимн во славу Геометрии.
Для иллюстрирования книги использованы гравюры голландского графика М. К. Эсхера, геометрические по своему содержанию.
Научно-художественная книга для широкого круга читателей.
Геометрическая рапсодия - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
3
Нить, проволока и любая иная линия — это уже одномерные предметы: у них есть длина. Сфера в пространстве одного измерения — это две точки на прямой: центр этой одномерной сферы лежит посередине между ними.
Представители двумерного мира имеют и длину и ширину — это ленты, куски ткани, листы бумаги" Окружность, граница двумерного круга — вот что такое сфера в пространстве двух измерений.
И наконец, кубы, пирамиды, дома, корабли и самолеты так же, как и мы с вами, входят в неисчислимую армию "трехмерцев", обладающих вдобавок к длине и ширине еще и высотой. У них есть объем. Сфера в трехмерном пространстве — это шар, "обычная" сфера.
Но вот что любопытно. Проволоку можно сломать, лист бумаги разрезать, а куб распилить. И при этом получается, что одномерная поверхность, линия, разделяется поверхностью нулевого измерения — точкой. Двумерная плоскость делится надвое одномерной линией, а трехмерный куб — двумерной плоскостью. Иными словами, границей "разлома" тела служит какое-то другое тело, измерение которого на единицу ниже.
Что же тогда служит границей четырехмерной сферры? Поистине прав Эйнштейн: оторопь берет, когда пытаешься все это вообразить!
4
Но не будем отчаиваться и зайдем с другого конца.
Если точку "протащить" по бумаге, то получится линия. Линия, в свою очередь, "заметает" плоскость — получается квадрат. Вытянем квадрат из плоскости — сделаем куб. Это уже третье измерение. Но что же такое надо сделать с кубом, чтобы обратить его в четырехмерное тело? И как его себе представить?
А что мы делаем, чтобы изобразить на плоском листе бумаги трехмерный куб? Мы проецируем его на плоскость. Получаются два квадрата один в другом, соединенные вершинами (5). Так спроецируем же и четырехмерный куб! Мы получим по аналогии два куба, один в другом, и снова вершины попарно соединены. Вот он, посланец четвертого измерения, вернее, не сам он, а его проекция на плоскость (6).
И точно так же, рассуждая по аналогии, мы можем отдаленно представить себе четырехмерную сферу. Если спроецировать глобус на плоскость, то проекции двух его половин наложатся одна на другую, и Нью-Йорк окажется где-то в центре нашей Сибири. Проецируя глобус, мы пропускаем одну его полусферу сквозь другую и соединяем их проекции, круги, только по границе — окружности (как квадраты по вершинам). Проекция гиперсферы — два шара, прошедшие один через другой и соединенные только по внешним поверхностям. Конечно, вообразить все это нелегко, но ничего мистического тут нет.
Еще один гость из иных миров носит имя "четырехмерный симплекс". Симплекс — это простейшая из всех возможных фигур. Добавляя каждый раз всего по одной точке, мы пробегаем по ступеням лестницы размерностей. Одна точка — это нульмерный симплекс. Он живет, как уже говорилось, в нулевом измерении. Две точки определяют отрезок — одномерный симплекс. Измерение — первое" Третья точка превращает линию в треугольник — двумерный симплекс. Еще точка — и вот перед нами пирамида. Это уже простейшее из всех трехмерных тел — трехмерный симплекс. Но вот добавлена пятая точка. Эта необычная конструкция состоит из пяти пирамид. Все вместе они отделяют четырехмерный симплекс от остального четырехмерного пространства точно так же, как шесть граней куба отделяют его от остального трехмерного пространства, а три стороны треугольника ограничивают его на плоскости.
Но что дает нам уверенность, что гиперкуб или "старший" из симплексов не принадлежит к нашему трехмерному миру? Существует один простой тест, основанный на формуле, выведенной еще Леонардом Эйлером [3] До Эйлера эту формулу знали Декарт и Лейбниц.
. Это удивительная формула. Она — истинно топологическая, потому что имеет дело не с размерами, углами или площадями, а лишь с числом вершин, ребер и сторон, или граней, любой геометрической фигуры. Вот она:
Г+В = Р+2.
То есть число граней (Г) плюс число вершин (В) равно числу ребер (Р) плюс 2. Проверьте правильность этой формулы на какой угодно фигуре — кубе, пирамиде, тетраэдре, икосаэдре, произвольном многограннике, теле самой замысловатой формы. При любых деформациях любой из них формула Эйлера верна.
Но возьмите гиперкуб (6): 24 стороны, 16 вершин, 32 ребра и сверх того 8 трехмерных граней — вот то геометрическое богатство, которым он обладает. Простейшие арифметические действия убедят вас, что гиперкуб пришел к нам в гости из сложнейшего четырехмерного мира, для него несправедлива формула Эйлера.
Итак, знакомство состоялось. Так и хочется задать "четырехмерцам" традиционный вопрос: "Ну как там?" Но гиперкуб молчит всеми своими восьмьюдесятью элементами, симплекс тоже безмолвствует, и нам остается лишь еще раз прибегнуть к испытанному приему — разбежаться перед прыжком: раз надо исследовать свойства четвертого измерения — отступим пока во второе.
"Гораздо легче найти ошибку, нежели истину", — писал великий Гёте. В 1884 году Эдвин Эбботт издал книгу, где справедливость этих слов доказывалась с наглядностью геометрического построения.
Книга его называлась "Флатланд — "Плосколяндия", и хотя она была чисто математической по содержанию, но вызвала много шума в разных кругах общества — автора упрекали даже в женоненавистничестве. И в самом деле, в воображаемой Плосколяндии, стране двух измерений, женщины были простейшей из фигур — прямой линией. Все остальные обитатели представляли собой различные многоугольники: рабочие и солдаты — треугольники, ремесленники — квадраты, джентльмены — пятиугольники, а священники были настолько многоугольными многоугольниками, что больше всего походили на круг. И вот в этот плоский, плоский, плоский мир является существо из третьего измерения — сфера. Квадрат (от его лица ведется рассказ) увидел перед собой священника, который вел себя самым противоестественным образом: он то раздувался, то сжимался. Сколько ни пыталась Сфера объяснить Квадрату, что все эти видимые им круги разного диаметра — это все она одна, когда проходит сквозь Плосколяндию вверх и вниз, он так и не смог вообразить себе трехмерную сферу, пронизывающую его двумерный мир.
Как можно убедить разумное существо, что ты посланец иных миров? Только продемонстрировав ему чудо. Здесь у нас с вами, как и у любого "трехмерца", самые широкие возможности. Ну что нам стоит вынуть плоскатика из его дома (а это просто замкнутая кривая), не разрушая стен? Извлечь содержимое плоского яйца, не протыкая его скорлупы? Произвести трансплантацию сердца любому гражданину Плосколяндии, не вскрывая его грудной клетки? Да просто, наконец, приподнять любой предмет в этой стране над плоскостью и тем самым "выключить" его из жизни и даже из поля зрения? И пусть плоскатики сочиняют свои басни о своих "летающих тарелочках".
Читать дальшеИнтервал:
Закладка: