Рэймонд Смаллиан - Принцесса или тигр?

Тут можно читать онлайн Рэймонд Смаллиан - Принцесса или тигр? - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Мир, год 1985. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Рэймонд Смаллиан - Принцесса или тигр? краткое содержание

Принцесса или тигр? - описание и краткое содержание, автор Рэймонд Смаллиан, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя.
Рассчитана на интересующихся занимательной математикой.

Принцесса или тигр? - читать онлайн бесплатно полную версию (весь текст целиком)

Принцесса или тигр? - читать книгу онлайн бесплатно, автор Рэймонд Смаллиан
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

9. а) Возьмем некоторое число X, которое порождает M ( AN 2 X ), и обозначим через Y число N 2 X . (Мы можем взять X равным M 32 AN 23, a Y = N 2 M 32 AN 23.) Тогда X порождает М(AY) , а Y порождает N(X) .

б) Теперь возьмем X, которое порождает М ( А 2 ВХ ), и обозначим через Y число 2 ВХ. (Итак, в этом случае решение имеет вид: X = М 32 А 2 В З, Y = 2 ВМ32 А 2 В З.)

в) Если число X порождает М(Y), а Y = 2 X , то мы сразу имеем решение задачи; поэтому положим X = М 322 М З, Y = 2 М 322 М З.

г) Если X порождает М(AY), а Y = 2 X , то мы сразу получаем требуемое решение; поэтому положим X = М 32 А 2 М З и Y = 2 М 32 А 2 М З.

10. Согласно второму принципу Крейга, существует некое число X, которое порождает M ( N 2 P 2 X ), a именно X = M 32 N 2 P 2 M 3. Положим Y = N 2 P 2 X , тогда число X порождает М(Y). Пусть теперь Z = P 2 X , тогда Y = N 2 Z ; при этом число Y порождает N(Z), а число Z порождает P(X). Таким образом, в явном виде решение будет таким: X = M 32 N 2 P 2 M 3, Y = N 2 P 2 M 32 N 2 P 2 M 3, Z = P 2 M 32 N 2 P 2 M 3.

Для частного случая это решение имеет вид: X = 432523243, Y = 5232432523243, Z = 32432523243.

Читатель сам может легко убедиться, что действительно X порождает обращение Y, Y порождает повторение Z, a Z порождает ассоциат X.

Кстати говоря, для любых трех чисел А, В и С мы всегда можем найти такие числа U, V и W, при которых U порождает AV, V порождает BW, a W порождает CU. Для этого надо просто взять такое число U, которое порождало бы число А 2 В 2 СU (если же мы воспользуемся вторым принципом Крейга, то получим U = 32 A 2 B 2 C 3). Положим теперь V = 2 B 2 CU и W = 2 CU. Тогда число U будет порождать AV, число V будет порождать BW, а число W будет порождать CU. Наконец, если теперь принять А, В и С за операционные числа и положить X = AV, Y = BW и Z = CU, то мы получим, что число X порождает A(Y), число Y порождает B(Z), а число Z порождает С(X). Таким образом, мы нашли еще один способ решения данной задачи.

12. Остановимся, попробуем обобщить!

Два дня спустя полицейское начальство из Скотланд-Ярда внезапно и совершенно неожиданно для Крейга срочно откомандировало его в Норвегию для расследования, хотя и интересного, но нас не касающегося. Поэтому я воспользуюсь отсутствием Крейга, чтобы поделиться с вами кое-какими собственными соображениями по поводу числовых машин Мак-Каллоха. Те же читатели, которым не терпится узнать решение загадки сейфа из Монте-Карло, могут отложить чтение этой главы на потом.

Математики обожают обобщать! Сплошь и рядом случается так: некий математик по имени X доказывает новую теорему и публикует доказательство в научном журнале. Потом проходит полгода и появляется другой математик, Y, который вдруг заявляет: «Ну ладно, неплохую теоремку доказал этот X, однако я могу доказать гораздо более общий случай!» И тут же печатает статью под названием «Об одном обобщении теоремы X-а». Или же Y оказывается похитрее и поступает следующим образом: сначала он втайне обобщает теорему, доказанную X-м, а потом исследует какой-нибудь частный случай своего обобщения. Этот частный случай по внешнему виду обычно настолько отличается от исходной теоремы, предложенной X-м, что Y вполне может опубликовать полученный результат в качестве новой, оригинальной теоремы. Тут на сцене, естественно, появляется третий математик по имени Z: этого Z никак не оставляет чувство, что где-то теоремы X-а и Y-a в чем-то важном очень сходны. Он начинает напряженно работать и… обнаруживает некий общий принцип. Z тут же публикует работу, в которой формулирует и доказывает этот новый общий принцип, а в заключение добавляет: «Теоремы, предложенные X-м и Y-м, вполне могут рассматриваться как частные случаи нашего общего принципа, поскольку…»

Ну что ж, я тут не исключение. Поэтому я хочу сначала указать на некоторые свойства машин Мак-Каллоха, которых, как мне кажется, не заметили ни сам Мак-Каллох, ни Крейг, ни Фергюссон, после чего я попытаюсь сделать некоторые обобщения.

Первое, что больше всего поразило меня при нашем обсуждении работы второй машины Мак-Каллоха, было то, что после введения правила 4 (правило повторения) мы уже больше не нуждаемся в правиле 2 (правило ассоциата) для того, чтобы получить принцип Крейга и законы Фергюссона! В самом деле, рассмотрим машину, в которой используются только правила 1 и 4. Для такой машины мы всегда можем найти некое число X, которое порождает само себя; можем также найти такое число, которое порождает повторение самого себя; задавая произвольное число А, мы можем найти такое число X, которое порождает АХ; наконец, мы можем найти число X, которое порождает повторение числа АХ или же повторение повторения АХ. Кроме того, используя машину Мак-Каллоха, из которой выведено правило 2, мы можем найти такое число X, которое порождает обращение самого себя, или число X, которое порождает повторение своего собственного обращения, или же число X, которое порождает обращение числа АХ, или, наконец, число X, которое порождает повторение обращения числа АХ. Далее, рассмотрим машину, в которой используются предложенные Мак-Каллохом правила 1, 2 и 4 (за исключением правила 3, то есть правила обращения). При такой машине у нас имеются два различных способа построения числа, которое порождает ассоциат самого себя, два способа построения числа, которое порождает свое собственное повторение; наконец, два способа построения числа, порождающего ассоциат своего повторения или повторение ассоциата самого себя.

Наконец, если у нас имеется произвольная машина, в которую заложены лишь правила 1 и 4, то принцип Крейга и законы Фергюссона продолжают выполняться и в этом случае. Таким образом, если бы мы вместо правила 2 воспользовались правилом 4, то для большинства задач, о которых шла речь в двух предыдущих главах, мы вполне могли бы получить альтернативные решения. (Понятно ли читателю, как все это можно сделать? Если нет, то можно обратиться к приведенным далее пояснениям.)

Я мог бы рассказать еще о многом, но лучше, пожалуй, будет сформулировать мои основные замечания в виде трех теорем.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Рэймонд Смаллиан читать все книги автора по порядку

Рэймонд Смаллиан - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Принцесса или тигр? отзывы


Отзывы читателей о книге Принцесса или тигр?, автор: Рэймонд Смаллиан. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x