Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]

Тут можно читать онлайн Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Литагент МИФ без БК, год 2019. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]
  • Автор:
  • Жанр:
  • Издательство:
    Литагент МИФ без БК
  • Год:
    2019
  • Город:
    Москва
  • ISBN:
    978-5-00117-455-4
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] краткое содержание

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - описание и краткое содержание, автор Йэн Стюарт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Профессор Иэн Стюарт в увлекательной манере и с юмором рассказывает о том, как развивалась математика – с древнейших времен и до наших дней. Он рассматривает наиболее значимые темы и события, обращая особое внимание на их прикладной характер.
Вы познакомитесь с виднейшими математиками своих эпох, а также узнаете, как то или иное математическое открытие повлияло на нас и нашу историю.
Эта книга для математиков и всех, кто интересуется историей математики и науки вообще.
На русском языке публикуется впервые.

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - читать онлайн бесплатно полную версию (весь текст целиком)

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - читать книгу онлайн бесплатно, автор Йэн Стюарт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Одно из самых влиятельных открытий Ферма одновременно оказалось самым простым. Оно известно как Малая теорема Ферма, чтобы отличать ее от Последней (иногда называемой Великой), и утверждает, что если р – любое простое число и а – любое целое число, то а р – a кратно р . Описанное свойство обычно неверно, когда р составное число, но не всегда.

На доказательство самой знаменитой теоремы Ферма ушло 350 лет. Он сформулировал ее примерно в 1640 г. и заявил, что доказал ее, однако всё, что нам известно о ней, – не более чем короткое примечание. У Ферма имелась собственная копия «Арифметики» Диофанта, вдохновившая его на большинство исследований, и он часто записывал на полях свои мысли. Судя по всему, в какой-то момент он задумался над уравнением Пифагора – сложением двух квадратов, чтобы получить тоже квадрат. Он захотел понять, что получится, если вместо квадратов поставить кубы, но не нашел решения. Та же проблема возникла и с четвертой, и с пятой, и с прочими степенями. В 1670 г. сын Ферма Самуэль опубликовал новую редакцию перевода «Арифметики» Гаспара Баше, в которую вошли и заметки на полях, сделанные Ферма.

ПЬЕР ДЕ ФЕРМА 1601–1665
Пьер Ферма родился в 1601 г во Франции в городке БомондеЛомань в семье - фото 100

Пьер Ферма родился в 1601 г. во Франции, в городке Бомон-де-Ломань, в семье торговца кожами Доминика Ферма и Клэр де Лонг, дочери потомственного юриста. К 1629 г. он успел сделать ряд важных открытий в геометрии и методах исчисления, но предпочел карьеру юриста и выкупил должность королевского советника парламента (члена высшего суда) в Тулузе в 1631 г. Так он получил приставку «де» к своему имени. После эпидемии чумы, унесшей жизни многих его предшественников, он быстро сделал карьеру. Уже в 1648 г. он стал членом Палаты эдиктов, где и служил до конца жизни, достигнув в 1652 г. высшей должности – председателя уголовного суда.

Он никогда не стремилсяк академической карьере, но математика была его страстью. В 1653 г. он заразился чумой, и пошли слухи о его скорой смерти, но он выжил. Он вел активную переписку с другими мыслителями своего времени, особенно с математиком Пьером де Каркави и монахом Мареном Мерсенном.

Он работал в сферахмеханики, оптики, теории вероятностей и геометрии, а его способ определения максимума и минимума функции проложил дорогу современному дифференциальному исчислению. Он стал одним из ведущих математиков мира, но почти не публиковал свои работы, главным образом из-за нежелания тратить время на их подготовку к печати.

Самое долгое влияние на науку имела его теория чисел, где он подтолкнул многих математиков к поиску доказательств ряда теорем и решения задач. Среди них (неверно названное) уравнение Пелля nx 2+ 1 = y 2и утверждение, что сумма двух кубов, не равных нулю, сама кубом быть не может. Это частное утверждение из более общей гипотезы, Последней теоремы Ферма, где кубы заменили n-й степенью для любой величины n ≥ 3.

Ферма скончался в 1665 г., через два дня после того, как вынес очередной приговор.

Одной из них стало известное утверждение, что если n ≥ 3, сумма двух чисел в степени n не может быть производным числом в степени n . В приписке на полях говорилось: «Наоборот, невозможно разложить ни куб на два куба, ни биквадрат на два биквадрата и вообще никакую степень, б о льшую квадрата, на две степени с тем же показателем. Я открыл этому поистине чудесное доказательство, но эти поля для него слишком узки».

Кажется маловероятным, что, даже если это доказательство существовало, оно было корректно. Первым и пока единственным стало доказательство Эндрю Уайлса, найденное в 1994 г. Оно использует сложнейшие абстрактные методы, разработанные только в ХХ в.

После Ферма многие выдающиеся математики трудились над развитием теории чисел, среди них Лагранж и Эйлер. За это время удалось найти доказательство многих из сформулированных, но не доказанных Ферма теорем.

Гаусс

Следующий важный шаг в теории чисел сделал Гаусс, опубликовавший в 1801 г. свой шедевр «Арифметические исследования». Книга сразу обеспечила теории чисел ведущую роль в математической науке. Отныне и впредь она оставалась ключевым компонентом математического мейнстрима. Гаусс в основном занимался собственными, новыми исследованиями, но также сумел заложить основы современной теории чисел и систематизировать идеи предшественников.

Одной из самых важных фундаментальных перемен была простая, но великолепная идея – модульная арифметика . Гаусс открыл новый вид числовой системы, аналогичный целым числам, но отличный в одном важном аспекте: некое определенное число, или модуль , было отождествлено с числом 0. Эта любопытная идея оказалась фундаментальной для нашего понимания свойств делимости обычных целых чисел.

Вот как выглядит идея Гаусса. Для целого числа m ч и сла a и b сравнимы по модулю m , обозначенному так:

ab (mod m ),

если разница ab делится на m без остатка. Тогда арифметика по модулю m работает точно так же, как простая арифметика, но теперь мы можем заменить m на 0 на любом этапе вычислений. А значит, любое умножение на число m можно игнорировать.

Чтобы передать дух идеи Гаусса, часто прибегают к выражению «арифметика часов». На часах число 12 можно считать эквивалентным 0, поскольку каждые 12 часов их значения повторяются (для континентальной Европы или военных более привычны 24 часа). Семь часов после шести часов будут обозначаться не 13, а 1 час, и по системе Гаусса 13 ≡ 1 (mod 12). Модульная арифметика подобна часам, для которых потребуется m часов на прохождение полного круга. Ничего удивительного, что модульная арифметика позволяет исследовать любые объекты, которые меняются по повторяющимся циклам.

«Арифметические исследования» используют модульную арифметику как основу для более глубоких идей, о трех из которых мы упомянем в этой книге.

Значительная ее часть описывает дальнейшее развитие наблюдений Ферма о том, что простые числа вида 4 k + 1 являются суммой двух квадратов, а простые числа вида 4 k − 1 – нет. Гаусс подтвердил этот результат как свойство целых чисел, которые можно записать в виде x 2+ y 2, где и x , и y – целые числа. Затем он спрашивает, что получится, если вместо этой формулы мы используем общую квадратичную форму: ax 2+ bxy + cy 2? Его теоремы слишком сложны для того, чтобы обсуждать их здесь, но дают практически полное понимание этого вопроса.

Следующая тема – закон квадратичной взаимности, завороживший и лишивший Гаусса покоя на долгие годы. Отправной точкой стал простой вопрос: как выглядят полные квадраты чисел по заданному модулю? Предположим, что модуль равен 11. Тогда получается последовательность квадратов (для чисел меньше 11):

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Йэн Стюарт читать все книги автора по порядку

Йэн Стюарт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] отзывы


Отзывы читателей о книге Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres], автор: Йэн Стюарт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x