Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]

Тут можно читать онлайн Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Литагент МИФ без БК, год 2019. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]
  • Автор:
  • Жанр:
  • Издательство:
    Литагент МИФ без БК
  • Год:
    2019
  • Город:
    Москва
  • ISBN:
    978-5-00117-455-4
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] краткое содержание

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - описание и краткое содержание, автор Йэн Стюарт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Профессор Иэн Стюарт в увлекательной манере и с юмором рассказывает о том, как развивалась математика – с древнейших времен и до наших дней. Он рассматривает наиболее значимые темы и события, обращая особое внимание на их прикладной характер.
Вы познакомитесь с виднейшими математиками своих эпох, а также узнаете, как то или иное математическое открытие повлияло на нас и нашу историю.
Эта книга для математиков и всех, кто интересуется историей математики и науки вообще.
На русском языке публикуется впервые.

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - читать онлайн бесплатно полную версию (весь текст целиком)

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - читать книгу онлайн бесплатно, автор Йэн Стюарт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

θ = A sin kt + B cos kt

для констант A и B , определяющих начальное положение и угловую скорость маятника.

Этот подход имеет ряд преимуществ: например, мы можем легко определить, что период колебаний маятника – время, необходимое на его полное движение, – равен 2π/ k . Главный недостаток с точки зрения математики в том, что решение делается неверным, когда θ становится достаточно большим (и здесь большим окажется даже угол в 20°, если мы хотим получить точный ответ). Тут уже возникает вопрос строгости: имеем ли мы тут случай, когда точное решение для приблизительного уравнения не противоречит приблизительному решению для точного? Ответ положительный, однако это удалось доказать только в 1900 г.

Второе уравнение можно решить точно, потому что оно линейное – содержит только первую степень неизвестной θ и ее производную, а коэффициенты – константы. Функция, которая является прототипом решения для всех линейных уравнений, – экспонента y = e x. Она удовлетворяет уравнению:

Укрощение бесконечности История математики от первых чисел до теории хаоса litres - изображение 131

Таким образом, e x – собственная производная. Это свойство – одна из причин того, что логарифмы именно по основанию е принимаются как натуральные. Соответственно производная натурального логарифма ln x равна 1/ x , а интеграл от 1/ x равен ln x . Любое линейное дифференциальное уравнение с постоянными коэффициентами может быть решено с использованием экспоненциальных и тригонометрических функций (последние, как мы уже видели, на самом деле являются экспоненциальными, только замаскированы).

Типы дифференциальных уравнений

Различают два типа дифференциальных уравнений. Обыкновенные дифференциальные уравнения (ОДУ) имеют дело с неизвестной функцией y от одной переменной х , а также с различными производными от y , такими как dy / dx или d 2 y / d 2 x . До сих пор приведенные здесь примеры дифференциальных уравнений относились к обыкновенным. Гораздо более сложной, но и более важной для математической физики является идея дифференциальных уравнений в частных производных (ДУЧП). Это уравнения, содержащие неизвестные функции от двух и более переменных, таких как f ( x, y, t ), где x и y – координаты на плоскости, а t – время. ДУЧП содержат эту функцию в выражении с частными производными относительно каждой переменной. Новое выражение используется для описания производных от одних переменных с учетом других, а все остальные остаются неизменными. Таким образом, ∂ x /∂ t показывает скорость изменения x во времени, а y остается константой. Это называется частной производной, отсюда и термин «дифференциальные уравнения в частных производных».

Эйлер представил ДУЧП на суд ученых в 1734 г., а д’Аламбер опубликовал ряд работ по ним в 1743 г., но большинство ранних исследований проходило за закрытыми дверями. Первый большой прорыв случился в 1746 г., когда д’Аламбер вернулся к старой проблеме – колебаниям струны. Иоганн Бернулли обсуждал численный метод конечных элементов в 1727 г., учитывая колебания конечного числа точечных масс, расположенных равноудаленно друг от друга вдоль невесомой струны. Д’Аламбер рассматривает непрерывную струну с однородной плотностью, применяя вычисления Бернулли для n масс и предполагая, что число n стремится к бесконечности. Таким образом, непрерывная струна рассматривалась как бесконечное множество бесконечно малых сегментов, соединенных вместе.

Исходя из результатов Бернулли, основанных на открытом Ньютоном законе движения, и сделав некоторые упрощения (например, что размер колебаний небольшой), д’Аламбер пришел к формуле ДУЧП:

где y y x t описывает форму струны в момент времени t как функцию - фото 132

где y = y ( x, t ) описывает форму струны в момент времени t как функцию горизонтальной координаты x . Здесь a – константа, определяемая по натяжению и плотности струны. В продолжение научного спора д’Аламбер доказал, что общее решение для ДУЧП имеет вид:

y ( x, t ) = f ( x + at ) + f ( x – at ),

где f периодична, причем период вдвое длиннее струны, и f – нечетная функция, т. е. f (– z ) = – f ( z ). Эта формула удовлетворяет естественному граничному условию, что концы струны неподвижны.

Уравнение волны

Сегодня мы называем ДУЧП д’Аламбера волновым уравнением и интерпретируем его решение как суперпозицию симметрично расположенных волн, из которых одна движется со скоростью а , а вторая со скоростью – а (они перемещаются в противоположных направлениях). Это стало одним из самых важных уравнений в математической физике, потому что в природе волны встречаются повсюду, причем самые разные.

Эйлер ознакомился с работой д’Аламбера и тут же постарался улучшить ее. В 1753 г. он показал, что без граничных условий общее решение будет выглядеть так:

y ( x, t ) = f ( x + at ) + g ( x – at ),

где f и g периодичны, но не удовлетворяют никаким другим условиям. В частности, эти функции могут иметь различные формулы для разных областей x – особенность, которую Эйлер считал свойством функций, имеющих разрывы, хотя в современной терминологии они непрерывны, но имеют разрывную первую производную.

В более ранних работах, опубликованных в 1749 г., он указывал, что (для простоты мы принимаем, что длина струны равна единице) простейшие нечетные периодические функции являются тригонометрическими:

f ( x ) = sin x , sin 2 x , sin 3 x , sin 4 x

и т. д. Эти функции представляют простые синусоидальные колебания с частотой 1, 2, 3, 4 и т. д. Эйлер утверждал, что общим решением здесь является наложение (суперпозиция) таких кривых. Базовая синусоида sin x является основной модой колебаний, а остальные будут более высокими модами, – в итоге получается то, что мы теперь называем гармониками.

Сравнение решений волнового уравнения, предложенных Эйлером и д’Аламбером, привело к фундаментальному кризису.

Д’Аламбер не признал возможности существования разрывных функций в интерпретации Эйлера. Более того, рассуждения Эйлера грешили одной нестыковкой, поскольку тригонометрические функции всегда непрерывны, и, следовательно, конечны наложения (суперпозиции) из них. Эйлер предпочел не углубляться в это противоречие между конечными и бесконечными суперпозициями. Впрочем, в те дни никто не был очень строгим в подобного рода вопросах и никто из ученых еще не ступил на этот сложный путь важности обоснования новых методов. Однако в итоге такое упущение привело к серьезным проблемам. На время разногласия утихли, пока новая работа Фурье не подлила масла в огонь.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Йэн Стюарт читать все книги автора по порядку

Йэн Стюарт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] отзывы


Отзывы читателей о книге Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres], автор: Йэн Стюарт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x