Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]
- Название:Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]
- Автор:
- Жанр:
- Издательство:Литагент МИФ без БК
- Год:2019
- Город:Москва
- ISBN:978-5-00117-455-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] краткое содержание
Вы познакомитесь с виднейшими математиками своих эпох, а также узнаете, как то или иное математическое открытие повлияло на нас и нашу историю.
Эта книга для математиков и всех, кто интересуется историей математики и науки вообще.
На русском языке публикуется впервые.
Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Назовем такую последовательность башней радикалов . Уравнение считается решаемым с помощью радикалов, если хотя бы одно его решение может быть представлено башней радикалов. Но вместо того, чтобы искать ее, Абель просто предположил, что она существует, и задался вопросом, как тогда должно выглядеть исходное уравнение.
Сам того не понимая, Абель заполнил пробел в доказательстве Руффини. Он показал, что если уравнение может быть решено с помощью радикалов, то должна существовать башня радикалов, приводящая к этому решению, обязательно содержащая только коэффициенты исходного уравнения. Это теорема Абеля о решении алгебраических уравнений; она содержит утверждение, что нельзя решить уравнение за счет включения множества новых величин, не связанных с исходными коэффициентами. Вроде бы очевидно, но Абель понимал, что это решающий момент для всего доказательства.
Ключом к абелеву доказательству невозможности стал искусный предварительный результат. Предположим, мы взяли некоторое выражение от корней x 1, x 2, x 3, x 4, x 5уравнения и извлекли его корень p -й степени для некоторого простого числа p . Предположим, что исходное выражение не изменилось, когда мы применили две специальные перестановки:
S: x 1, x 2, x 3, x 4, x 5→ x 2, x 3, x 1, x 4, x 5
и
Т: x 1, x 2, x 3, x 4, x 5→ x 1, x 2, x 4, x 5, x 3.
Затем Абель показал, что p -й корень из этого выражения также не изменяется, когда мы применяем S и T . Этот предварительный результат напрямую подводит нас к доказательству теоремы о невозможности подъема на «башню», ступень за ступенью. Предположим, уравнение пятой степени можно решить в радикалах, т. е. существует башня радикалов, начинающаяся с коэффициентов, по которой можно подняться к некоему решению.
Первый этаж башни – безобидное выражение с коэффициентами – не меняется, когда мы применяем перестановки S и T , потому что они влияют не на коэффициенты, а на корни. Поэтому, по предварительному результату Абеля, второй этаж башни также неизменен после применения S и T , ведь он был достигнут примыканием корня p -й степени к чему-то с первого этажа для некоего простого числа p . По той же причине третий этаж остается неизменным, когда мы применяем S и T . То же касается четвертого этажа, пятого… до самого верха.
Но последний этаж содержит некое решение. Может ли им быть x 1? Если да, x 1должен оставаться неизменным, когда мы применили S . Но S , примененное к x 1, дает x 2, а не x 1; это нас не устраивает. По схожим причинам иногда после применения T решение, определяемое башней, не может быть x 2, x 3, x 4или x 5. Все пять корней исключены из любой такой башни – и в итоге она на самом деле не может содержать решения.
Из этой логической ловушки нет выхода. Уравнения пятой степени не имеют решения, потому что любое решение в радикалах должно обладать взаимоисключающими свойствами, а значит, не может существовать.
Галуа
Эстафету в разгадке не только тайны решения уравнения пятой степени, но и алгебраических уравнений в целом принял Эварист Галуа, одна из самых трагических фигур в истории математики. Галуа сам перед собой поставил задачу определить, какие уравнения могут быть решены в радикалах, а какие нет. Как и многие его предшественники, он понимал, что ключ к алгебраическому решению кроется в поведении корней в результате перестановок. Проблема заключалась в симметрии.
Руффини и Абель понимали, что выражение корней может быть как симметричным, так и нет. Оно может оказаться частично симметричным: неизменным при одних перестановках и изменяемым при других.
Галуа заметил, что перестановки, фиксирующие некоторые выражения с корнями, не обязательно формируют такие соотношения для любого их старого набора. Они имеют простую и очень характерную особенность. Если вы берете любые две перестановки, фиксирующие выражение, и перемножаете их, результат также фиксирует перестановку. Такую систему перестановок он назвал группой . Как только вы поймете верность этой идеи, доказать ее будет очень просто. Секрет в том, чтобы ее осмыслить и осознать ее важность.

Эварист Галуа был сыном Николя-Габриеля Галуа и Аделаиды-Мари Демант. Он рос в сотрясаемой революцией Франции и проникся левыми политическими взглядами. Его огромный вклад в математику оставался неоцененным еще 14 лет после его смерти.
Французская революция началась со взятия Бастилии в 1789 г. и казни Людовика XVI в 1793 г. К 1804 г. Наполеон Бонапарт провозгласил себя императором, но после серии военных неудач был вынужден отречься от престола. Монархия возродилась только в 1814 г., при Людовике XVIII. В 1824 г. он скончался, и на престол сел Карл Х.
В 1827 г.Галуа продемонстрировал свой несравненный талант – подкрепленный ярым увлечением – к математическим исследованиям. Он попытался поступить в престижную Политехническую школу, но не прошел экзамен. В 1829 г. его отец, в то время мэр города, повесился из-за скандала по ложному обвинению, раздутого его политическими врагами. Вскоре после этого Галуа повторил попытку поступить в Политехническую школу и снова потерпел неудачу. Он обучался в Высшей нормальной школе.
В 1830 г. Галуа предоставил свои исследования по решению алгебраических уравнений на конкурс, объявленный Академией наук. Председатель жюри Фурье скоропостижно скончался, бумаги были утеряны. Награда досталась Абелю (к тому времени он уже умер от туберкулеза) и Карлу Якоби. В том же году Карл Х был низложен и вынужденно сбежал, чтобы спасти свою жизнь. Директор Высшей нормальной школы запер студентов в аудитории, чтобы помешать их участию в беспорядках. Галуа в приступе ярости написал злобное письмо, обвинив директора в малодушии, и был немедленно изгнан из школы.
Компромиссной фигурой в политической борьбе стал король Луи-Филипп. Галуа вступил в республиканское ополчение, артиллерию Национальной гвардии, но новый король ее распустил. Девятнадцать офицеров артиллерийской части были арестованы за подстрекательство к мятежу, но революционно настроенный суд снял все обвинения, и гвардейцы решили отметить освобождение праздничным обедом. Там Галуа произнес ироничный тост за короля, стоя с ножом в руке. Его арестовали, но оправдали, потому что (с его слов) тост звучал как «За Луи-Филиппа, если он не изменник», и не содержал угрозы в его адрес. Однако в День взятия Бастилии Галуа снова заключили под стражу за ношение отныне запрещенной формы Национальной гвардии.
Читать дальшеИнтервал:
Закладка: