Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]
- Название:Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]
- Автор:
- Жанр:
- Издательство:Литагент МИФ без БК
- Год:2019
- Город:Москва
- ISBN:978-5-00117-455-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] краткое содержание
Вы познакомитесь с виднейшими математиками своих эпох, а также узнаете, как то или иное математическое открытие повлияло на нас и нашу историю.
Эта книга для математиков и всех, кто интересуется историей математики и науки вообще.
На русском языке публикуется впервые.
Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Абстрактные группы
В «Эрлангенской программе» Клейна особый упор делается на то, что исследуемые группы состоят из преобразований, т. е. элементы группы действуют в некотором пространстве. И б о льшая часть ранних работ по теории групп предполагает такую структуру. Но более поздние исследования потребовали нового уровня абстрагирования: сохранить свойства группы, но отказаться от понятия пространства. Группа состоит из математических объектов, которые могут быть объединены для получения аналогичных объектов, но они не обязательно должны быть преобразованиями.
Это могут быть числа. Два числа (целые, рациональные, действительные, комплексные) могут быть сложены, и результатом также станет число такого же вида. Числа образуют группу с помощью операции сложения. Но число – не преобразование. Несмотря даже на роль групп как преобразований, объединивших геометрии, от понятия связанного с ними пространства лучше отказаться, чтобы объединить теорию групп.
Одним из первых математиков, решившихся предложить такой шаг, стал Артур Кейли в трех своих статьях от 1849 и 1854 гг. Он говорил, что группа содержит набор операторов 1, a, b, c и т. д. Объединение ab двух любых операторов должно быть другим оператором; особый оператор 1 удовлетворяет условию 1 a = a и a 1 = a для всех операторов a ; ассоциативный закон ( ab ) c = a ( bc ) должен сохраняться. Но его операторы по-прежнему опирались на что-то еще (множество переменных). Кроме того, он пропустил решающее условие: для любого a должно быть обратное a ´, такое, что a ´ a = aa ´ = 1. Так Кейли хотя и подобрался к призу, но промахнулся на волосок.
В 1858 г. Рихард Дедекинд позволил членам группы быть произвольными сущностями, а не только преобразованиями или операторами, однако включил в свое определение коммуникационный закон ab = ba . Эта идея отлично послужила для его цели – теории чисел, но оставляла в стороне самые любопытные группы в теории Галуа, не говоря о более широком математическом мире. Современная концепция абстрактной группы была предложена Вальтером фон Диком в 1882–1883 гг. Он допускал обратимость, но отрицал необходимость закона коммутативности. Полноценный аксиоматичный подход к группам появился позже, в 1902 г., благодаря Эдуарду Хантингтону, Элиакиму Муру (1902) и Леонарду Диксону (1905).
С абстрактной структурой группы отделились от конкретной интерпретации, и их теория стала стремительно развиваться. Ранние исследования по большей части касались частных случаев: ученые, заинтересовавшиеся примерами отдельных групп или каких-то особых их типов, старались выявить их общие черты. Необходимые в этой области основные понятия и методы появились на удивление быстро, и теперь эта тема процветает.
Теория чисел
Еще одним источником новейших алгебраических идей стала теория чисел. Начало ей положил Гаусс, представив ученым то, что сейчас называется гауссовыми целыми числами . Это были комплексные числа a + bi , где a и b целые числа. Сумма и произведение этих чисел имеют такой же вид. Гаусс открыл, что понятие простых чисел обобщается на гауссовы целые числа. Они простые, если не могут быть выражены как произведение других гауссовых целых чисел, за исключением тривиальных случаев. Разложение гауссовых целых чисел на простые множители уникально. Некоторые из простых чисел, например 3 и 7, остаются простыми, даже если выражены через гауссовы простые числа, другие – нет: например, 5 = (2 + i )(2 – i ). Этот факт тесно связан с теоремой Ферма о простых числах и их представлении как суммы двух квадратов, причем гауссовы простые числа иллюстрируют эту теорему и родственные ей.
Если мы разделим одно гауссово целое число на другое, полученный результат окажется не обязательно гауссовым целым числом, но, по крайней мере, близким к нему: он будет иметь вид a + bi , где a и b – рациональные числа. Это и есть гауссовы числа . Используя более общий подход, ученые, занимающиеся теорией чисел, открыли, что происходит нечто одинаковое, если мы возьмем любой многочлен p ( x ) с целыми коэффициентами и затем рассмотрим все линейные комбинации a 1 x 1+ … + a n x nот его корней x 1, …, x n. Положим, что a 1, …, a n – рациональные числа, тогда мы получаем систему комплексных чисел, которая замкнута относительно сложения, вычитания, умножения и деления; это значит, что, когда эти действия применяются к такому числу, в результате получается число подобного же рода. Такая система представляет собой поле алгебраических чисел . Если же вместо этого мы потребуем, чтобы a 1, …, a nбыли целыми, то система станет замкнутой относительно сложения, вычитания и умножения, но не деления: тогда мы получим кольцо алгебраических чисел .
Самым знаменитым приложением этих новых числовых систем стала Великая теорема Ферма – утверждение о том, что уравнение Ферма, x n+ y n= z n, не имеет целочисленного решения, если n равно или больше 3. Никому не удавалось восстановить якобы найденное Ферма «чудесное доказательство», и чем дальше, тем больше было сомнений в том, что он в принципе его создал. Но был достигнут и некоторый прогресс. Ферма нашел доказательство для третьей и четвертой степеней, Петер Лежён Дирихле в 1828 г. преодолел пятую степень, Анри Лебег нашел доказательство для седьмой степени в 1840 г.
В 1847 г. Габриель Ламе заявил, что нашел доказательство для любой степени, но Эрнст Эдуард Куммер указал на допущенную им ошибку. Ламе без доказательств принял утверждение, что единственность разложения числа на простые множители справедлива для алгебраических чисел, но это неверно для некоторых (скорее, для большинства) полей алгебраических чисел. Куммер показал, что единственность не соблюдается для поля, полученного в исследовании Великой теоремы Ферма для 23-й степени. Однако это не обескуражило Куммера, и он нашел способ обойти возражение, изобретя новый математический аппарат – теорию идеальных чисел. В 1847 г. он доказал теорему Ферма для всех подряд степеней вплоть до 100, за исключением 37, 59 и 67. Развивая свое изобретение, ученый сумел справиться и с этими случаями в 1857 г. К 1980-м гг. эти методы позволили найти доказательства для всех случаев до 150 000-й степени, но их возможности к этому моменту оказались практически исчерпаны.
Кольца, поля и алгебры
Определение Куммера для идеального числа было громоздким, и Дедекинд заново сформулировал его в терминах идеалов – специальных подсистем целых алгебраических чисел. Благодаря школе Давида Гильберта в Гёттингене, в частности Эмми Нётер, эта отрасль науки получила солидный фундамент в виде аксиом. В их списке, кроме групп, были определены три другие алгебраические системы: кольца, поля и алгебры.
Читать дальшеИнтервал:
Закладка: