Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]

Тут можно читать онлайн Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Литагент МИФ без БК, год 2019. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]
  • Автор:
  • Жанр:
  • Издательство:
    Литагент МИФ без БК
  • Год:
    2019
  • Город:
    Москва
  • ISBN:
    978-5-00117-455-4
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] краткое содержание

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - описание и краткое содержание, автор Йэн Стюарт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Профессор Иэн Стюарт в увлекательной манере и с юмором рассказывает о том, как развивалась математика – с древнейших времен и до наших дней. Он рассматривает наиболее значимые темы и события, обращая особое внимание на их прикладной характер.
Вы познакомитесь с виднейшими математиками своих эпох, а также узнаете, как то или иное математическое открытие повлияло на нас и нашу историю.
Эта книга для математиков и всех, кто интересуется историей математики и науки вообще.
На русском языке публикуется впервые.

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - читать онлайн бесплатно полную версию (весь текст целиком)

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - читать книгу онлайн бесплатно, автор Йэн Стюарт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В кольце определены такие действия, как сложение, вычитание и умножение, причем они удовлетворяют всем обычным законам алгебры, за исключением коммутативного для умножения. Если же в системе выполняется и он, значит, мы имеем дело с коммутативным кольцом.

ЭММИ АМАЛИЯ НЁТЕР 1882–1935
Эмми Нётер появилась на свет в еврейской семье математика Макса Нётера и Иды - фото 183

Эмми Нётер появилась на свет в еврейской семье математика Макса Нётера и Иды Кауфманн. В 1900 г. она получила право преподавать языки, но решила связать свое будущее с математикой. К тому времени в немецких университетах уже позволяли женщинам обучаться на неофициальной основе с позволения их профессора, чем Нётер и пользовалась с 1900 по 1902 г. в Университете Эрлангена. Затем она перебралась в Гёттинген, чтобы прослушать курсы лекций Гильберта, Клейна, Минковского в 1903 и 1904 гг.

Она написала докторскую диссертацию под руководством Пауля Гордана в 1907 г. Диссертация была посвящена вычислениям очень сложной системы инвариантов. Для мужчины следующим шагом стало бы получение степени хабилитированного доктора, но это было невозможно для женщины. Она оставалась дома в Эрлангене, ухаживая за больным отцом, однако продолжала свои исследования и быстро заслужила репутацию серьезного ученого.

В 1915 г. ее снова пригласили в Гёттинген Клейн и Гильберт, приложившие все силы, чтобы получить для нее разрешение работать на факультете. Им удалось добиться своего в 1919 г. Вскоре после своего прибытия она доказала фундаментальную теорему, известную как теорема Нётер, о связывающей симметрии физической системы с законом сохранения. Ряд ее работ Эйнштейн использовал для формулировки некоторых частей своей общей теории относительности. В 1921 г. она написала статью по теории колец и идеалов, изложив ее с точки зрения абстрактной аксиоматики. Ее работа заметно повлияла на классический труд Бартеля Леендерта ван дер Вардена «Современная алгебра». Когда Германия оказалась под властью нацистов, Нётер уволили из-за еврейского происхождения, и она эмигрировала в США. Ван дер Варден говорил, что для нее взаимоотношения между числами, функциями и преобразованиями абсолютно прозрачны и легко поддаются обобщению и обработке, подчиняясь общей концепции.

Для поля определены такие действия, как сложение, вычитание, умножение и деление, и они удовлетворяют всем обычным законам алгебры, в том числе и коммутативному для умножения. Если последний не работает, мы имеем дело с алгебраическим телом.

Любая алгебра подобна кольцу, но число ее элементов можно также умножить на различные константы, действительные, комплексные числа или – в самом общем случае – на поле. Законы сложения самые обычные, а умножение должно удовлетворять набору разных аксиом. Если при этом выполняется ассоциативность, мы имеем дело с ассоциативной алгеброй. Если они удовлетворяют законам, связанным с коммутатором xy – yx , то это будет алгебра Ли.

Существуют десятки, если не сотни, различных типов алгебраических структур, каждая со своим списком аксиом. Некоторые были созданы только для изучения последствий отдельных интересных аксиом, но большинство обязаны своим появлением необходимости решить какую-то определенную проблему.

Простые конечные группы

Высшим достижением исследований XX в., посвященных конечным группам, стала успешная классификация самых простых из них. Это открытие Киллинг совершил, работая с группами и алгебрами Ли. Это буквально привело к полному описанию всех возможных базовых элементарных кирпичиков для конечных групп, а именно простых групп. Если под группой подразумеваются молекулы какого-то вещества, простыми группами будут образующие их атомы.

ЭНДРЮ УАЙЛС род. 1953
Эндрю Уайлс родился в Кембридже в 1953 г В возрасте десяти лет он прочел о - фото 184

Эндрю Уайлс родился в Кембридже в 1953 г. В возрасте десяти лет он прочел о Великой теореме Ферма. Тогда он решил стать математиком и доказать ее. К тому времени, как ученый получил докторскую степень, он практически отказался от этой идеи, поскольку теорема казалась неразрешимой. Уайлс предпочел заняться теорией чисел эллиптических кривых – вроде бы совершенно другой областью математики. Он переехал в США и стал профессором в Принстоне.

К 1980-м гг.уже стало ясно, что между Великой теоремой Ферма и глубокими и трудными вопросами по эллиптическим кривым есть неожиданная связь. Герхард Фрай сделал ее явной с помощью так называемой гипотезы Таниямы – Симуры. Когда Уайлс узнал об идее Фрая, он прекратил все другие исследования, чтобы полностью сосредоточиться на Великой теореме Ферма. После семи лет исследований он убедил себя, что нашел доказательство, основанное на особом случае гипотезы Таниямы – Симуры. Как выяснилось, в этом доказательстве была серьезная дыра, но Уайлсу с Ричардом Тейлором удалось ее закрыть: полное доказательство было опубликовано в 1995 г.

Другие математики вскоре расширили доказательство гипотезы Таниямы – Симуры, продолжая развивать новый метод. За свою работу Уайлс удостоился больших почестей, в том числе премии Вольфа. В 1998 г., уже не подходя по возрасту для конкурса на Филдсовскую премию и медаль, по традиции присуждаемые ученым до 40 лет, он был награжден специальной серебряной тарелкой от Международного математического союза. В 2000 г. он был посвящен в рыцари-командоры ордена Британской империи.

Классификация Киллинга для простых групп Ли доказала, что они могут относиться к одному из четырех бесконечных семейств A n, B n, CD nс пятью исключениями: G 2, F 4, E 6, EE 8. Возможными классификациями всех простых конечных групп занимались слишком многие математики, чтобы перечислить их поименно, но общее направление в решении этой проблемы было задано Даниэлем Горенштейном. Его ответ, опубликованный в 1988–1990 гг., до странности знаком: список бесконечных семейств и список исключений. Но в нем уже гораздо больше семейств, а число исключений увеличилось до 26.

Семейства включают знакопеременные группы (известные еще Галуа) и ряд групп типа Ли, похожих на простые, но заданных над разными конечными полями, а не над комплексными числами. В этой области есть несколько любопытных вариаций. Исключениями оказываются 26 отдельных групп с некоторыми намеками на общие свойства, но без унифицированной структуры. Первое доказательство того, что классификация полная, пришло из совокупности трудов сотен математиков общим объемом около 10 тыс. страниц. Ряд самых важных частей доказательства так и не был опубликован. Последние работы тех, кто продолжает исследовать эту область, посвящены построению более простой и прозрачной классификации, – подход, ставший возможным благодаря тому, что ответ уже известен. Результаты выходят в свет в виде сборников статей, объем которых в сумме уже составляет около 2000 страниц.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Йэн Стюарт читать все книги автора по порядку

Йэн Стюарт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] отзывы


Отзывы читателей о книге Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres], автор: Йэн Стюарт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x