Макс Тегмарк - Наша математическая вселенная

Тут можно читать онлайн Макс Тегмарк - Наша математическая вселенная - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Литагент Corpus, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Наша математическая вселенная
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Corpus
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    978-5-17-085475-2
  • Рейтинг:
    3.86/5. Голосов: 71
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Макс Тегмарк - Наша математическая вселенная краткое содержание

Наша математическая вселенная - описание и краткое содержание, автор Макс Тегмарк, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Галилео Галилей заметил, что Вселенная — это книга, написанная на языке математики. Макс Тегмарк полагает, что наш физический мир в некотором смысле и есть математика. Известный космолог, профессор Массачусетского технологического института приглашает читателей присоединиться к поискам фундаментальной природы реальности и ведёт за собой через бесконечное пространство и время — от микрокосма субатомных частиц к макрокосму Вселенной.

Наша математическая вселенная - читать онлайн бесплатно полную версию (весь текст целиком)

Наша математическая вселенная - читать книгу онлайн бесплатно, автор Макс Тегмарк
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если бы слабое ядерное взаимодействие оказалось существенно слабее, то вокруг нас не было бы водорода, поскольку вскоре после Большого взрыва весь он превратился бы в гелий. В обоих случаях — если бы взаимодействие было бы гораздо сильнее или слабее — нейтрино при взрыве сверхновой не могли бы рассеять в космосе внешние слои звезды, и необходимые для жизни тяжёлые элементы вроде железа вряд ли смогли бы покинуть звёзды, где они образуются, и оказаться в составе планет, например Земли.

Если бы электроны были гораздо легче, то не было бы стабильных звёзд, а если значительно тяжелее, то не могли бы существовать упорядоченные структуры, например кристаллы или молекулы ДНК. Если бы протоны оказались на 0,2 % тяжелее, они превращались бы в нейтроны, неспособные удерживать возле себя электроны, — и не было бы атомов. Напротив, если бы протоны были существенно легче, то нейтроны внутри атомов превращались бы в протоны, так что не было бы устойчивых атомов, кроме водорода. На самом деле масса протона зависит от другого регулятора, который имеет очень широкий диапазон варьирования и нуждается в точной настройке до 33 цифры после запятой, чтобы могли существовать стабильные атомы, кроме водорода.

Точная настройка в космологии

Многие из примеров точной настройки были найдены в 70–80-х годах Полом Дэвисом, Брэндоном Картером, Бернардом Карром, Мартином Рисом, Джоном Барроу, Франком Типлером, Стивеном Вайнбергом и другими физиками. Новые примеры продолжают появляться. Свою первую вылазку в эту область я предпринял в компании с Мартином Рисом, седым астрономом с безупречными британскими манерами, который стал одним из моих научных героев. Я не видел никого, кто бывал так счастлив, выступая с докладом — его глаза словно бы лучились. Он первым в научном истеблишменте поддержал меня в том, чтобы, следуя зову сердца, обратиться к «неортодоксальным» идеям. В предыдущей главе мы узнали, что амплитуда первичных космологических флуктуаций составляла около 0,002 %. Мы с Мартином подсчитали, что если бы они были меньше, то галактики не образовались бы, а если больше, то это привело бы к частому падению астероидов и прочим неприятностям.

А как насчёт случайности?

Но что нам даёт эта точная настройка? Прежде всего: почему мы не можем просто списать всё на цепочку счастливых совпадений?

Научный метод не терпит необъяснимых совпадений. Сказать, что моя теория требует необъяснимого совпадения для согласования с наблюдениями , всё равно что сказать: «Моя теория неверна». Мы видели, например, как теория инфляции предсказывает, что пространство плоское, а пятна космического микроволнового фона должны иметь средний размер около 1°, и что эксперименты, описанные в гл. 4, подтвердили это. Допустим, команда «Планка» обнаружила бы значительно меньший средний размер пятен, который заставил бы их объявить, что эти данные исключают теорию инфляции с уверенностью 99,999 %. Это значило бы, что случайные флуктуации в плоской Вселенной могли бы, в принципе, заставить пятна выглядеть при измерениях необычно малыми, приводя к некорректным выводам, но с вероятностью 99,999 % этого не случилось бы. Иными словами, инфляция потребовала бы необъяснимого совпадения с шансами 1: 100 000, чтобы оказаться в согласии с наблюдениями. Если бы Алан Гут и Андрей Линде провели после этого совместную пресс-конференцию и настаивали на том, что нет аргументов против теории инфляции, поскольку они нутром чуют — измерения «Планка» были просто совпадением, — такую позицию следовало бы отвергнуть как ненаучную.

Случайные флуктуации подтверждают, что в науке нельзя быть стопроцентно уверенным в чём-либо. Всегда есть вероятность того, что вам чрезвычайно не повезло со случайным измерительным шумом, что детектор сломался или даже что весь эксперимент был всего лишь галлюцинацией. На практике, однако, опровержение с надёжностью 99,999 % обычно рассматривается научным сообществом как последний гвоздь в крышку гроба теории. Что касается теории о том, что точная настройка тёмной энергии — это случайность, то она требует веры в гораздо более невероятное совпадение, а значит, исключается с вероятностью примерно 99,999 999… %, где после запятой около 120 девяток.

Слово на букву «А»

А что можно сказать про объяснение точной настройки через мультиверс II уровня? Теория, в которой все регуляторы природы принимают в тех или иных местах фактически все возможные значения, со стопроцентной надёжностью предсказывает, что существует пригодная для жизни вселенная, такая как наша. И, поскольку мы можем жить лишь в пригодной для обитания вселенной, мы не должны удивляться, что наблюдаем именно такую.

Хотя это логичное объяснение, оно весьма спорно. После всех известных истории наивных попыток сохранить Землю в качестве центра Вселенной, в сознании людей глубоко укоренилась противоположная точка зрения. Принцип Коперника гласит, что в нашем положении в пространстве и времени нет ничего особенного. Брэндон Картер предложил конкурирующую идею, которую назвал слабым антропным принципом : «Мы должны быть готовы принять во внимание тот факт, что наше местоположение в этой Вселенной с необходимостью является привилегированным в достаточной мере, чтобы быть совместимым с нашим существованием как наблюдателей». Некоторые мои коллеги считают, что Картер сделал предосудительный шаг назад, к геоцентризму. С принятием во внимание точной настройки картина мультиверса II уровня действительно полностью нарушает принцип Коперника. Как показано на рис. 6.7, подавляющее большинство вселенных мертво, а наша собственная в высшей степени необычна — она содержит гораздо меньше тёмной материи, чем большинство, а также имеет очень странные установки многих других «рукояток».

Объяснение наблюдений путём введения параллельных вселенных, которые мы не можем наблюдать, кажется некоторым моим коллегам ошибочным. Я помню доклад, сделанный в 1998 году в Фермилабе, месторасположении знаменитого ускорителя [28]в окрестностях Чикаго. Аудитория взорвалась, когда докладчик произнёс «слово на букву „А“» — антропный . На самом деле, чтобы усыпить бдительность рецензента и добиться публикации, мы с Мартином Рисом решили просто не использовать это слово в аннотациях первых совместно написанных статей по антропной тематике…

Рис 67Если плотность тёмной энергии представлена здесь градациями серого - фото 46

Рис. 6.7.Если плотность тёмной энергии (представлена здесь градациями серого) изменяется от вселенной к вселенной, то галактики, планеты и жизнь будут появляться только в тех вселенных, где она наименьшая. На этом рисунке обитаемы 20 % наиболее светлых вселенных, но реальная их доля может оказаться ближе к 10 -120.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Макс Тегмарк читать все книги автора по порядку

Макс Тегмарк - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Наша математическая вселенная отзывы


Отзывы читателей о книге Наша математическая вселенная, автор: Макс Тегмарк. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x