Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Тут можно читать онлайн Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Издательский Дом «Бахрах-М», 2001., год 2001. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
  • Автор:
  • Жанр:
  • Издательство:
    Издательский Дом «Бахрах-М», 2001.
  • Год:
    2001
  • Город:
    Самара
  • ISBN:
    ISBN 5-94648-001-4
  • Рейтинг:
    3.3/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда краткое содержание

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - описание и краткое содержание, автор Даглас Хофштадтер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.

Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.

Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.

Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.

Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать онлайн бесплатно полную версию (весь текст целиком)

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать книгу онлайн бесплатно, автор Даглас Хофштадтер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Это старое высказывание неверно и в другом смысле. Дело в том, что, программируя на языках все высших уровней, вы все с меньшей и меньшей точностью можете сказать, что именно вы приказываете компьютеру! Многие прослойки переводов могут отделять «передний конец» сложной программы от действительных команд на машинном языке. На уровне, на котором вы думаете и программируете, ваши высказывания могут быть более похожи на утверждения и предложения, чем на команды. При этом внутренняя «возня», вызванная вводом высказывания высшего уровня, обычно остается для вас невидима, так же, как, когда вы едите бутерброд, вы не думаете о пищеварительных процессах, которые при этом начинаются у вас внутри.

Так или иначе, мнение, что «компьютеры могут делать только то, что им приказано», впервые высказанное лэди Лавлэйс в ее знаменитых мемуарах, настолько распространено и так связано с мнением о том, что «компьютеры не могут думать», что мы вернемся к нему в следующих главах, когда сможем обсудить этот вопрос на более высоком уровне.

Два типа системы

Системы, построенные из многих частей, бывают двух типов. Первый их них характеризуется тем, что поведение одних частей аннулирует поведение других. В подобных системах не столь важно, что делается на низшем уровне, поскольку результатом любых происходящих там событий будет почти одинаковое поведение высшего уровня. Примером такой системы может служить баллон с газом, молекулы которого сталкиваются друг с другом в результате множества сложных микроскопических процессов; однако макроскопическое целое — это стабильная система в спокойном состоянии, в которой определены температура, давление и объем. В системах второго типа микроскопические изменения на низшем уровне могут возрасти до такой степени, что в результате заметно изменится макроскопический уровень. Примером такой системы является сборочный конвейер. Если один из сборщиков ошибется, с конвейера сойдет бракованная деталь.

Компьютер — это сложная комбинация систем обоих типов. Его провода представляют собой предсказуемую систему: они проводят электричество в соответствии с законом Ома. Этот весьма точный закон похож на законы, описывающие поведение газа в баллоне, поскольку он зависит от статистических эффектов: хаотическое поведение биллионов частиц дает в результате предсказуемое общее поведение системы. Компьютер также содержит макроскопические части, такие как печатающее устройство, чье поведение задается определенными электрическими импульсами. То, что печатает это устройство, ни в коей мере не является результатом мириад взаимоуничтожающих микроскопических эффектов. В большинстве компьютерных программ значение каждого бита играет важную роль в том, что напечатает компьютер. От изменения любого бита информации значительно изменяется и конечный результат.

Системы, состоящие только из «надежных» подсистем, — то есть таких подсистем, чье поведение может быть с уверенностью предсказано на основании описания их частей, — играют важнейшую роль в нашей повседневной жизни, поскольку они являются оплотом стабильности. Мы можем быть уверены, что стены не упадут нам на голову, что тротуар окажется сегодня там же, где вчера, что солнце не исчезнет с небосвода, что часы показывают правильное время и так далее. Блочные модели подобных систем практически полностью детерминисткие. Разумеется, другой тип системы, играющей важную роль в нашей жизни, это система, чье поведение варьируется в зависимости от внутренних микроскопических параметров, — зачастую огромного множества таких параметров, — которые не поддаются прямому наблюдению. Наша блочная модель подобной системы будет выражаться в терминах некоего «пространства» ее действия и будет включать вероятностные оценки того, в каком месте этого пространства «приземлится» система в данный момент.

Баллон с газом, который, как я уже сказал, является надежной системой в результате множества взаимоуничтожающих микроскопических эффектов, подчиняется точным, детерминистким законам физики. Это блочные законы , поскольку они рассматривают газ как единое целое, игнорируя его составляющие части. Более того, микроскопическое и макроскопическое описания газа используют совершенно разные термины. Первое требует определения положения и скорости каждой из молекул газа; второе требует определения только трех новых величин температуры, давления и объема. Две первые величины вообще не имеют соответствия на микроскопическом уровне. Математическое соотношение этих трех величин, выраженное в следующем простом уравнении: pV=cT, где с — постоянная, — это закон, который одновременно зависит и не зависит от событий на низшем уровне. Если говорить менее парадоксально, этот закон может быть выведен из законов, управляющих молекулярным уровнем, в этом смысле он зависит от низшего уровня. С другой стороны, этот закон позволяет, при желании, полностью игнорировать низший уровень; в этом смысле он от него не зависит.

Важно иметь в виду, что закон высшего уровня не может быть выражен в терминах низших уровней. «Давление» и «температура» — новые термины, которые не могут быть поняты только на основании низшего уровня. Мы, люди, прямо воспринимаем температуру и давление, поскольку мы так устроены, не удивительно, что мы открыли этот закон. Но существа, которые воспринимали бы газы как абстрактные математические конструкции, должны были бы обладать умением выводить новые понятия, чтобы открыть подобный закон.

Эпифеномены

В завершение этой главы я хотел бы рассказать забавную историю о сложных системах. Однажды я беседовал с двумя программистами, работавшими с операционной системой компьютера, который я использовал. Они сказали, что она запросто справляется со своей задачей, когда к ней подключено менее тридцати пяти человек; но когда это число достигает тридцати пяти, время ответа внезапно замедляется настолько, что с таким же успехом можно отключиться от системы, пойти домой и вернуться попозже. Шутя, я сказал: «Эту проблему решить ничего не стоит — для этого нужно только отыскать то место в операционной системе, где записано число „35“, и поменять его на „60“!» Все рассмеялись. Дело, разумеется, в том, что такого места просто не существует. Откуда же, в таком случае, появляется это критическое число — 35 пользователей? Это видимое следствие общей организации системы — так называемый «эпифеномен».

Так же вы можете спросить о бегуне. «Где в нем содержится число „10“, позволяющее ему пробегать 100 метров за 10 секунд?» Ясно, что оно не содержится ни в каком специальном месте. Время, которое бегун показывает на стометровке, — результат его физического состоянии, быстроты его реакций, и миллиона других факторов, взаимодействующих между собой, когда он бежит. Это время вполне воспроизводимо, но оно не записано нигде в его теле. Оно распределено по всем клеткам его тела и проявляется только во время бега.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Даглас Хофштадтер читать все книги автора по порядку

Даглас Хофштадтер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда отзывы


Отзывы читателей о книге ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда, автор: Даглас Хофштадтер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x