Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Тут можно читать онлайн Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Издательский Дом «Бахрах-М», 2001., год 2001. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
  • Автор:
  • Жанр:
  • Издательство:
    Издательский Дом «Бахрах-М», 2001.
  • Год:
    2001
  • Город:
    Самара
  • ISBN:
    ISBN 5-94648-001-4
  • Рейтинг:
    3.3/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда краткое содержание

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - описание и краткое содержание, автор Даглас Хофштадтер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.

Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.

Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.

Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.

Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать онлайн бесплатно полную версию (весь текст целиком)

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать книгу онлайн бесплатно, автор Даглас Хофштадтер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Построение Гёделя состоит из описания как формы, так и содержания строчек формальной системы, которую мы опишем в этой главе — Типографской Теории Чисел . Неожиданный поворот состоит в том, что при помощи хитроумного отображения, открытого Гёделем, форма строчек может быть описана в самой формальной системе. Давайте же познакомимся с этой странной системой, способной взглянуть сама на себя.

Что мы хотим выразить в ТТЧ

Для начала приведем некоторые высказывания, типичные для теории чисел; затем постараемся найти основные понятия, в терминах которых эти высказывания могут быть перефразированы. Далее эти понятия будут заменены индивидуальными символами. Необходимо заметить, что, говоря о теории чисел, мы имеем в виду только свойства положительных целых чисел и нуля (и множеств подобных чисел). Эти числа называются натуральными числами . Отрицательные числа не играют в этой теории никакой роли. Таким образом, слово «число» будет относиться исключительно к натуральным числам. Очень важно для вас, читатель, помнить о разнице между формальной системой (ТТЧ) и удобной, хотя и не очень строго определенной, старой ветвью математики — самой теорией чисел; я буду называть последнюю «Ч».

Вот некоторые типичные высказывания Ч — теории чисел:

(1) 5 — простое число.

(2) 2 не является квадратом другого числа.

(3) 1729 — сумма двух кубов.

(4) Сумма двух положительных кубов сама не является кубом.

(5) Существует бесконечное множество простых чисел.

(6) 6 — четное число.

Кажется, что нам понадобится символ для каждого из таких понятий, как «простое число», «куб» или «положительное число» — однако эти понятия, на самом деле, не примитивны. Например, «простота» числа зависит от его множителей, которые, в свою очередь, зависят от умножения. Кубы также определяются в терминах умножения. Давайте постараемся перефразировать те же высказывания в более элементарных терминах.

(1) Не существует чисел а и b больших единицы, таких, что 5 равнялось бы а×b

(2) Не существует такого числа b , что b×b равнялось бы 2.

(3) Существуют такие числа b и с , что b×b×b + с×с×с равняется 1729.

(4) Для любых чисел b и с больше нуля не существует такого числа а , что а×а×а = b×b×b + с×с×с .

(5) Для каждого а существует b , большее, чем а , такое, что не существует чисел c и d , больших 1 и таких, что b равнялось бы c×d .

(6) Существует число e такое, что 2× e равняется 6.

Этот анализ продвинул нас на пути к основным элементам языка теории чисел. Очевидно, что некоторые фразы повторяются снова и снова:

для всех чисел b существует число b , такое, что больше чем равняется умноженное на О, 1, 2,…

Большинство таких фраз получат индивидуальные символы. Исключением является «больше чем», которое может быть упрощено еще. Действительно, высказывание « а больше b » становится:

существует число с отличное от 0, такое, что а = b + с .

Символы чисел

Мы не будем вводить отдельного символа для каждого из натуральных чисел. Вместо этого у нас будет очень простой способ приписать каждому натуральному числу составной символ, так, как мы делали это в системе pr. Вот наше обозначение натуральных чисел.

нуль 0

один S0

два SS0

три SSS0

и т. д.

Символ S интерпретируется как «следующий за.» Таким образом, строчка SS0 интерпретируется буквально как «следующий за следующим за нулем.» Подобные строчки называются символами чисел .

Переменные и термины

Ясно, что нам нужен способ говорить о неопределенных, или переменных числах. Для этого мы будем использовать буквы а, b, с, d, e . Однако пяти букв будет недостаточно Так же, как для атомов в исчислении высказывании, нам требуется их неограниченное количество Мы используем похожий метод для получения большего количества переменных — добавление любого количества штрихов. Например:

e

d'

с"

b'''

a''''

все являются переменными.

В каком-то смысле, использовать целых пять букв алфавита — это слишком большая роскошь, так как мы могли бы легко обойтись просто буквой а и штрихами. Впоследствии я действительно опущу буквы b , c , d , и e — результатом будет более строгая версия ТТЧ, сложные формулы которой будет немного труднее расшифровать. Но пока давайте позволим себе некоторую роскошь! Как насчет сложения и умножения? Очень просто: мы будем использовать обычные символы «+» и «*». Однако мы также введем требование скобок (мы мало помалу углубляемся в правила, определяющие правильно построенные строчки ТТЧ). Например, чтобы записать « b плюс с » и « b , умноженное на с », мы будем использовать строчки:

( b + с )

( b*с )

В отношении скобок послабления быть не может; опустить их — значит произвести неправильно сформированную формулу. («Формула?» Я использую этот термин вместо слова «строчка» лишь для удобства. Формула — это просто строчка ТТЧ.)

Кстати, сложение и умножение всегда будут рассматриваться как бинарные операции, то есть операции, объединяющие не более, чем два числа. Таким образом, если вы хотите записать «1+2+3», вы должны решить, какое из двух выражений использовать:

(S0+(SS0+SSS0))

((S0+SS0)+SSS0)

Теперь давайте символизируем понятие равенства . Для этого мы просто используем «=». Преимущество этого символа, принадлежащего Ч— неформальной теории чисел — очевидно: его весьма легко прочесть. Неудобство же при его использовании напоминает проблему, возникавшую при использовании слов «точка» и «линия» в формальном описании геометрии: если ослабить внимание, то легко спутать обыденное значение этих слов с поведением символов, подчиняющихся строгим правилам. Обсуждая проблемы геометрии, я различал между обыденными словами и терминами — последние печатались заглавными буквами. Так, в эллиптической геометрии ТОЧКОЙ было объединение двух точек. Здесь такого различия не будет, поэтому читатель должен постараться не спутать символ с многочисленными ассоциациями, которые он вызывает. Как я сказал ранее о системе pr, строчка ---не является числом 3; вместо этого она действует изоморфно с числом 3, по крайней мере, при сложении. То же самое можно сказать и о строчке SSS0.

Атомы и символы высказываний

Все символы исчисления высказываний, кроме букв, с помощью которых мы получали атомы ( P, Q, R), будут использованы в ТТЧ; при этом они сохранят ту же интерпретацию. Роль атомов будут играть строчки, которые, будучи интерпретированы, дадут равенства, такие как S0=SS0 или (S0×S0) = S0. Теперь у нас есть достаточно данных, чтобы перевести несколько простых суждений в запись ТТЧ:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Даглас Хофштадтер читать все книги автора по порядку

Даглас Хофштадтер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда отзывы


Отзывы читателей о книге ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда, автор: Даглас Хофштадтер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x