Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
- Название:ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
- Автор:
- Жанр:
- Издательство:Издательский Дом «Бахрах-М», 2001.
- Год:2001
- Город:Самара
- ISBN:ISBN 5-94648-001-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда краткое содержание
Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.
Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.
Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.
Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.
Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
(14) (S0*S0)=S0 транзитивность (строчки 3,13)
Возникает интересный вопрос: «Каким образом мы можем вывести строчку 0=0?» Кажется, что очевидным способом было бы сначала вывести строчку Aa:a=a и затем использовать спецификацию. Как вы думаете, где ошибка в нижеследующем «выводе» Aa:a=a... Можете ли вы ее исправить?
(1) Aa:(a+0)=a аксиома 2
(2) Aa:a=(a+0) симметрия
(3) Aa:a=a транзитивность (строчки 2,1)
Я привел это маленькое упражнение, чтобы указать на следующий простой факт: при манипуляции хорошо знакомыми символами, такими, как «=», мы не должны торопиться. Мы должны следовать правилам, а не нашему знанию пассивных значений символов. (Тем не менее, это знание весьма ценно, чтобы помочь нам направить вывод по верному пути.)
Давайте выясним, почему и спецификация, и общность нуждаются в ограничениях Взгляните на следующие две деривации; в каждой из них одно из ограничений нарушено. Обратите внимание, к каким печальным последствиям это привело.
(1) [ проталкивание
(2) a=0 посылка
(3) Aa:a=0 обобщение (ложно!)
(4) Sa=0 спецификация
(5) ] выталкивание
(6) правило фантазии
(7) Aa:
(8) <0=0эS0=0> спецификация
(9) 0=0 предыдущая теорема
(10) S0=0 отделение (строчки 9,8)
Это первое из печальных последствий. Другое получается из неверной спецификации.
(1) Aa:a=a предыдущая теорема
(2) Sa=Sa спецификация
(3) Eb:b=Sa существование
(4) Aa:Eb:b=Sa обобщение
(5) Eb:b=Sb спецификация (ложно!)
Теперь вы убедились, почему необходимы ограничения. Вот простая задачка: переведите (если вы этого уже не сделали раньше) четвертый постулат Пеано в нотацию ТТЧ, и затем выведите эту строчку как теорему.
Если вы поэкспериментируете с теми правилами и аксиомами ТТЧ, которые я привел до сих пор, вы обнаружите, что возможно вывести следующую пирамидальную семью теорем (множество строчек, отлитых из одной формы и отличающихся только тем, что символы чисел 0, S0, SS0, и так далее, идут по нарастающей):
(0+0)=0
(0+S0)=S0
(0+SS0)=SS0
(0+SSS0)=SSS0
(0+SSSS0)=SSSS0
и так далее.
Каждая из теорем этой семьи может быть выведена из предыдущей теоремы с помощью коротенькой, всего лишь в пару строчек, деривации. Результатом является нечто вроде каскада теорем, каждая из которых вызывает к жизни следующую. (Эти теоремы напоминают теоремы pr, где средняя и правая группы тире возрастали одновременно.)
Существует одна строчка, которую легко записать и которая суммирует пассивное значение всех этих строчек, вместе взятых. Вот эта универсально квантифицированная суммирующая строчка:
Aa:(0+a)=a
Однако при помощи правил, данных до сих пор, эту строчку вывести нельзя. Попробуйте сами, и вы в этом убедитесь!
Вы можете подумать, что ситуацию легко исправить, используя следующее:
(ПРЕДЛАГАЕМОЕ) ВСЕОБЩЕЕ ПРАВИЛО: Если все строчки в пирамидальной семье — теоремы, то универсально квалифицированная строчка, их суммирующая, также является теоремой.
Недостаток этого правила в том, что оно не может быть использовано при работе по способу M. Только люди, думающие о системе, могут знать, что каждая из бесконечного множества строчек — теорема. Следовательно, это правило не может являться частью формальной системы.
Мы очутились в странной ситуации, в которой возможно типографским путем производить теоремы о сложении любых конкретных чисел, но даже такая простая строчка, как приведенная выше, выражающая свойство сложения в общем , не является теоремой. Вы, возможно, найдете это не таким уж странным, поскольку мы уже были в похожей ситуации с системой pr. Однако система prне имела претензий по поводу своих возможностей; на самом деле, там было невозможно даже выразить общие свойства, а тем более, доказать их. В той системе просто не было соответствующего «оборудования» — при этом нам и в голову не приходило, что система была дефектна. Однако у ТТЧ возможностей гораздо больше; соответственно, мы ожидаем от нее большего, чем от системы pr. Если приведенная выше строчка — не теорема, то у нас есть основания подозревать, что в ТТЧ есть какой-то дефект. На самом деле, существует даже название для систем с подобным дефектом — они называются ω- неполными . (Символ ω — «омега» — выбран потому, что иногда все множество натуральных чисел обозначается этой буквой.) Далее следует точное определение:
Система является ω-неполной, если все строчки в пирамидальной семье — теоремы, но универсально квантифицированная строчка, их суммирующая, — не теорема.
Кстати, отрицание приведенной суммирующей строчки —
~Aa:(0+a)=a
— тоже не-теорема ТТЧ. Это означает, что первоначальная строчка неразрешима внутри системы . Если бы та или другая были теоремами, мы сказали бы, что они разрешимы. Хотя это и звучит как мистический термин, в неразрешимости внутри данной системы нет ничего таинственного. Это означает, что система может быть дополнена. Например, внутри абсолютной геометрии пятый постулат Эвклида неразрешим. Чтобы получить геометрию Эвклида, его необходимо добавить; а отрицание пятого постулата, наоборот, производит не-эвклидову геометрию. Поскольку мы обратились к геометрии, давайте вспомним, почему это происходит. Дело в том, что четыре постулата не определяют термины «точка» и «линия» с достаточной точностью, так что остается возможность для различных интерпретаций этих понятий. Точки и линии Эвклидовой геометрии представляют собой лишь одну из возможных интерпретаций понятий «точка» и «линия» — ТОЧКИ и ЛИНИИ неэвклидовой геометрии — другая интерпретация. Однако то, что люди в течение тысячелетий пользовались такими хорошо известными словами как «точка» и «линия», заставило их думать, что эти слова могут иметь лишь одно-единственное значение.
С подобной же ситуацией мы сталкиваемся в ТТЧ Мы приняли нотацию, которая способствует созданию у нас некоторых предрассудков Например, использование символа «+» создает у нас впечатление, что любая теорема, использующая этот знак, сообщает нам что-то значимое о хорошо нам знакомой операции, под названием «сложение» Поэтому нам кажется, что предложить «шестую аксиому»
~Ea:(0+a)=a
было бы неверным. Она не совпадает с нашими знаниями о сложении Однако это одна из возможностей расширить ту ТТЧ, что мы сформулировали до сих пор Система, использующая данную строчку в качестве шестой аксиомы, последовательна в том смысле, что в ней нет двух теорем типа x и ~ x. Однако если вы наложите эту «шестую аксиому» на пирамидальную семью теорем, вы, возможно, будете поражены кажущимся несоответствием теорем этой семьи с новой аксиомой Этот тип непоследовательности, однако, не так вреден, как другой (где и x и ~ x — теоремы). На самом деле это даже нельзя назвать непоследовательностью, так как существует такая интерпретация символов ТТЧ, в которой все получается хорошо.
Читать дальшеИнтервал:
Закладка: