Питер Эткинз - Десять великих идей науки. Как устроен наш мир.

Тут можно читать онлайн Питер Эткинз - Десять великих идей науки. Как устроен наш мир. - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Десять великих идей науки. Как устроен наш мир.
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    978-5-17-051198-3, 978-5-17-050272-1, 978-5-271-19820-5, 978-5-271-19821-2
  • Рейтинг:
    4.33/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Питер Эткинз - Десять великих идей науки. Как устроен наш мир. краткое содержание

Десять великих идей науки. Как устроен наш мир. - описание и краткое содержание, автор Питер Эткинз, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе. Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.

Десять великих идей науки. Как устроен наш мир. - читать онлайн бесплатно полную версию (весь текст целиком)

Десять великих идей науки. Как устроен наш мир. - читать книгу онлайн бесплатно, автор Питер Эткинз
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Мендель был священником прихода в прелатстве имперского и королевского Австрийского ордена императора Франца-Иосифа, заслуживающим похвал директором Моравского ипотечного банка, основателем Австрийской метеорологической ассоциации, членом Моравского и Силезского общества поддержки агрокультуры, естественных наук и краеведения, и, что наиболее важно, садовником. В 1850-х гг., примерно в то же время, когда Дарвин записывал свои мысли, он начал исследования, сделавшие его посмертно знаменитым. Множество вопросов о достоверности его работы или работы его ассистентов поднималось — и энергично отводилось, — когда выдающийся статистик и генетик Рональд Элмер Фишер (1890-1962) объявил, что цифры, приводимые Менделем, вызывают подозрения. Позднее понимались вопросы, знал ли действительно Мендель, что он делает, и не является ли миф, выросший вокруг его достижений, скорее следствием нашей подслеповатости, чем его прозрения. Так, толчком к работам Менделя послужило желание понять скорее правила гибридизации, чем механизм наследственности. Мотивацией же была попытка реализовать преобладающую в то время точку зрения, что новые виды возникают из гибридизации, причем «устойчивые» гибриды и становятся новыми видами. Его безрассудной целью было создание новых видов, и он потерпел в этом оглушительное фиаско.

Мендель представил свои результаты — по существу, мрачный отчет о неудаче — в собрании общества естествоиспытателей Брюнна на заседаниях 8 февраля и 8 марта 1865 г. и опубликовал их как «Опыты над растительными гибридами» (Versuche über Planzenhybriden) в трудах общества в 1866 г. Эти результаты были полностью проигнорированы, если не считать вводящей в заблуждение цитаты в Die Pflanzen Mischlinge (1881) В.О. Фока, и пролежали незамеченными до 1900 г. Возможно, они были проигнорированы потому, что с современной им точки зрения описывали лишь неудачу в попытке выявить рациональные основы гибридизации, а дрейф Менделя в сторону административной работы также мог отражать его собственное разочарование в печальном исходе трудов всей его жизни. Затем три ботаника — Хуго де Врис в Голландии, Карл Эрих Корренс в Германии и Эрих Чермак фон Зейсенегг в Австрии — обнаружили, как они заявили, что сами того не зная, как они заявили, повторили его работу. В этих сообщениях имеется специфический привкус надувательства, поскольку было согласовано, что один из авторов (де Врис) отложит признание приоритета Менделя до той поры, когда окажется, что другой (Корренс) уже опубликовал подобную работу, так что де Врис, понимая, что так или иначе первенство придется уступить, объявил приоритет Менделя попыткой замутить блеск сообщения Корренса. Вся манера объяснений была выдержана в духе пренебрежения к работе Менделя тридцатипятилетней давности, и содержала утверждения, что он был вторгшимся в науку любителем, что он был слишком тесно связан с церковью, от которой ничего хорошего ждать не приходится, что его математические построения — даже в простой арифметике, которая ему требовалась — приводят в замешательство современных биологов. Истина может быть проще: до тех пор, пока де Врис, Корренс и фон Зейсенегг не вытащили на свет его работу и не взглянули на нее с более современной точки зрения, о механизме наследственности не появилось ни одной стоящей мысли.

Хотя Мендель провел свои исследования в девятнадцатом веке, их значение стало очевидным только в двадцатом. Теперь мы понимаем, что Мендель квантовал наследственность, подобно тому, как Планк квантовал энергию (см. главу 7). Теперь мы способны увидеть, что его достижением были свидетельства, которые привели к низвержению преобладающей тогда теории смешанной наследственности и к ее неизбежно последовавшей замене на теорию, в которой наследственную информацию несли дискретные единицы. В течение восьми лет его внимание было сфокусировано на садовом горохе (Pisum sativum) , обладавшем множеством свойств, необходимых для проводимых им исследований. Во-первых, сама структура цветка довольно специфична и дает возможность либо легко скрестить два растения, либо, как это случается в природе, позволить им самоопылиться. Более того, это растение имеет ряд изменчивых характеристик: например, его лепестки могут быть белыми или пурпурными, его горошины могут быть округлыми или покрытыми морщинами, иметь зеленую или желтую внутренность, находиться в желтом или зеленом стручке, а его ростки могут быть кряжистыми или тонкими. Более того, и, возможно это было подлинной причиной, горошины имели достаточно низкую цену на рынке семян, занимали мало места и давали много ростков в относительно короткое время. Мы также можем подозревать, что гороховый суп удручающе часто появлялся в меню монастыря Св. Томаша. Единственным недостатком садового гороха было то, что он не слишком фотогеничен в пейзаже, и экспериментальный садик Менделя засадили, к удовольствию посетителей, более привлекательными бегониями (рис. 2.1).

Рис 21Сад Менделя в его монастыре Мендель использовал в своей работе - фото 13

Рис. 2.1.Сад Менделя в его монастыре. Мендель использовал в своей работе обычный горох, что оказалось удачным выбором, отчасти из соображений экономии, но также и потому, что многие характеристики гороха генетически независимы. В настоящее время этот сад засажен бегониями.

Мендель хотел знать, каким способом гибридизация декоративных растений производит изменения, повторяющиеся в следующих поколениях. Он решил поискать систематическую схему, которая, как он считал, могла скрыто присутствовать в наблюдениях. В первые два года он решил убедиться, что его растения дают правильное потомство, что кустики зеленого гороха порождают зеленый горох, а кустики желтого гороха порождают желтый, и то же происходит с другими признаками. Потом он начал серию перекрестных опылений и самоопылений. Например, когда он скрещивал зеленый горох с желтым, весь горох в потомстве первого поколения (в так называемых F 1гибридах) был желтым. Однако, когда гибриды самоопылялись, три четверти гороха в следующем, F 2, поколении были желтыми, а одна четверть зеленой. Таинственным образом первоначальный зеленый опять появился. Подобная схема, с тем же численным отношением, возникала, когда он скрещивал и потом самоопылял растения, проявляющие другие характеристики. Ясно, что схема проявилась, а схемы вопиют, требуя объяснения.

На основании огромного числа наблюдений Мендель построил гипотезу. Первым ключом для него стал тот факт, что его эксперименты приводят к вариантам с простыми числовыми отношениями. Чтобы найти объяснение дискретным числам, которые получались в этих отношениях, он предположил, что различие внутри каждой пары характеристик (зеленый и желтый горох, например) обусловлено присутствием в растении различных дискретных единиц. Мендель использовал термин «элемент», чтобы обозначить дискретные целостности наследственности, и употреблял термин «характер», когда обсуждал внешний вид, фенотип своих растений. Большинство его рассуждений проводилось в терминах этих наблюдаемых характеров, и только более поздние интерпретаторы обратили внимание на роль лежащих в основании «элементов». Эти целостности тогда получали множество различных наименований, но теперь повсеместно известны под именем, которое предложил в 1909 г. датский биолог Вильгельм Людвиг Иогансен, гены . Более точно, различные версии генов, ответственные за частные фенотипы, например, ответственные за цвет гороха, называются аллелями . Так, зеленый горох и желтый горох соответствуют разным аллелям гена, ответственного за цвет гороха.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Питер Эткинз читать все книги автора по порядку

Питер Эткинз - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Десять великих идей науки. Как устроен наш мир. отзывы


Отзывы читателей о книге Десять великих идей науки. Как устроен наш мир., автор: Питер Эткинз. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x