Питер Эткинз - Десять великих идей науки. Как устроен наш мир.

Тут можно читать онлайн Питер Эткинз - Десять великих идей науки. Как устроен наш мир. - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Десять великих идей науки. Как устроен наш мир.
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    978-5-17-051198-3, 978-5-17-050272-1, 978-5-271-19820-5, 978-5-271-19821-2
  • Рейтинг:
    4.33/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Питер Эткинз - Десять великих идей науки. Как устроен наш мир. краткое содержание

Десять великих идей науки. Как устроен наш мир. - описание и краткое содержание, автор Питер Эткинз, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе. Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.

Десять великих идей науки. Как устроен наш мир. - читать онлайн бесплатно полную версию (весь текст целиком)

Десять великих идей науки. Как устроен наш мир. - читать книгу онлайн бесплатно, автор Питер Эткинз
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Более современные методы изменения ДНК включают прямую технику микроинъекции, в которой генетический материал, содержащий новые гены, вводится в клетки реципиента посредством стеклянной иглы с тонким концом. Клетка после этого выглядит как своя собственная (или, по крайней мере, как чужая собственная) и создает механизм, с помощью которого безотказно снабжает генами ядра клеток хозяина и встраивает эти гены в них. Гены также можно встраивать, создавая поры в мембране клетки и предоставляя входящим генам возможность искать собственный путь внутрь. В химическом порообразовании клетки погружают в раствор специальных химикалий; в электропорообразовании клетки подвергают действию слабого электрического тока. Если вы полагаете, что эти техники слишком уж рафинированы, вы можете прибегнуть к биобаллистике , в которой маленькие осколки металла одевают в генетический материал и затем просто выстреливают в клетку. Тут мне вспоминается сцена в одном из фильмов про Индиану Джонса, где, после того как его оппонент продемонстрировал замечательно отработанные приемы традиционного фехтования, Джонс случайно выстрелил в него.

Раз уж мы заговорили о стрельбе, то еще одним важным следствием понимания структуры ДНК является ее использование в судопроизводстве в форме ДНК-профилирования , или, говоря менее формально ДНК-дактилоскопии . Настоящая дактилоскопия, снятие образцов узора на коже подушечек пальцев, была предложена как способ опознания подозреваемых в 1880 г. Генри Фаулдзом, шотландским врачом, работавшим в Токио. Вскоре после этого она была использована для снятия подозрений с невиновного и для опознания преступника в совершенной там ночной краже со взломом. Через сотню лет, после того как Алек Джеффрис в 1984 г. в университете в Лестере создал ДНК-дактилоскопию, опознание личности продвинулось от кончиков ее пальцев к каждой клетке ее тела. Нам следует усвоить две черты этой техники: одна — умножение микроскопических количеств ДНК, другая — реальная дактилоскопия. ДНК-профилирование является столь важной техникой в судопроизводстве, в установлении родственных связей и в эволюционных исследованиях, что оно претерпело чудовищно бурное развитие за последние двадцать лет, обрастая различными особенностями, для использования в различных обстоятельствах. Дадим краткое описание типичного подхода.

Кэри Муллис (р. 1944), изобретатель полимеразной цепной реакции (ПЦР), говорит, что эта идея пришла ему в голову в 1983 г. во время поездки при лунном свете в горах Калифорнии, где, должно быть, пролегает одна из приятнейших дорог к завоеванию Нобелевской премии. Полимераза, напомним, является ферментом, который помогает копировать нить ДНК, используя ее как шаблон; тот же фермент можно использовать в искусственной среде. Чтобы последнее стало возможным, фермент необходимо обильно снабжать нуклеотидными основаниями и двумя праймерами , представляющими собой короткие последовательности приблизительно из дюжины нуклеотидов; это позволяет реакции продолжаться. Сначала, при нагревании смеси, нити ДНК разделяются (ДНК «плавится»), затем раствор охлаждают, чтобы праймеры могли прикрепиться к соответствующим частям нитей ДНК — молекулы праймеров проталкиваются до тех пор, пока не найдут свое точное дополнение, а затем сцепляются с ним — и действовать как ограничители той части молекулы, которую надо скопировать. В конце температуру снова повышают до значения, при котором полимераза может эффективно функционировать, и на шаблоне растет комплементарная нить. Поскольку фермент должен выдерживать высокие температуры фазы плавления, он экстрагируется из бактерий, таких как Thermus oguaticus , которые живут в горячих источниках. Полный цикл занимает около трех минут. Затем его повторяют снова и снова, от тридцати до сорока раз, постепенно производя десять миллионов копий лоскутков исходной ДНК, лежащих между маркерами праймеров (рис. 2.16). Это означает, что даже из микроскопического образца ДНК нужная область может быть увеличена и сделана пригодной для экспертизы.

Рис 216Последовательность диаграмм показывающих как действует полимеразная - фото 26

Рис. 2.16.Последовательность диаграмм, показывающих, как действует полимеразная цепная реакция (ПЦР). Вверху слева мы видим представление двойной спирали ДНК-мишени. На первом шагу (слева ниже) нити разделяются, и к каждой из них прикрепляются праймеры. Ферменты выращивают комплементарную нить по шаблону, предоставляемому каждой из нитей. Сдвоенные нити плавятся снова, и праймеры прикрепляются к каждой из них. Далее ферменты, как и раньше, строят комплементарные версии нитей, но теперь в смеси появляются копии ДНК, лежащие между двумя праймерами и несущие последовательность, повторяющую мишень, и после ряда повторений они начинают доминировать.

Сама техника профилирования использует полиморфизм наших генов, тот факт, что молекулы ДНК могут существенно различаться у разных индивидов. Например, мусор в интронах нашей ДНК может содержать длинные последовательности бессмысленной ДНК, накопившиеся во время мейоза. Здесь мы сосредоточимся на изменчивом числе тандемных дупликаций (ИЧТД), как, например, переменное число фрагментов …CGATCGATCGATCGAT… в одной и той же области ДНК, накопленных разными индивидами. Поскольку эти тандемные дупликации лежат в интронных областях, они ничего не означают, и индивид, как и любой наблюдатель, совершенно неосведомлен об их существовании, если только это не вариации эксонов, например, ответственных за карий или голубой цвет глаз (последний является результатом отсутствия коричневого пигмента).

Теперь предположим, что мы пользуемся ПЦР, чтобы приумножить ту часть молекулы ДНК, которая у индивидов обладает повышенной полимофностью. Действие ограничительных ферментов, таких как Аlи I, которые пропихиваются, пока не найдут последовательность AGCT, защелкнутся на ней, а затем перекусят молекулу, или Eco RI, которые прикрепляются, когда наткнутся на GAATTC и режут в этой точке, будет делить умноженные области ДНК на множество фрагментов разных размеров, зависящих от числа тандемных дупликаций у индивида. Затем образец протаскивается сквозь гель с помощью приложенного электрического тока, этот процесс называют электрофорезом . Поскольку маленькие фрагменты могут проскользнуть через лес перекрестных связей в геле легче, чем большие фрагменты, образец разделяется на ряд полос, которые выглядят немного похожими на торговый штрих-код (рис. 2.17). Картина полос является изображением спектра тандемных дупликаций в образце и, следовательно, характеристикой индивида.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Питер Эткинз читать все книги автора по порядку

Питер Эткинз - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Десять великих идей науки. Как устроен наш мир. отзывы


Отзывы читателей о книге Десять великих идей науки. Как устроен наш мир., автор: Питер Эткинз. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x