Питер Эткинз - Десять великих идей науки. Как устроен наш мир.

Тут можно читать онлайн Питер Эткинз - Десять великих идей науки. Как устроен наш мир. - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Десять великих идей науки. Как устроен наш мир.
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    978-5-17-051198-3, 978-5-17-050272-1, 978-5-271-19820-5, 978-5-271-19821-2
  • Рейтинг:
    4.33/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Питер Эткинз - Десять великих идей науки. Как устроен наш мир. краткое содержание

Десять великих идей науки. Как устроен наш мир. - описание и краткое содержание, автор Питер Эткинз, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе. Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.

Десять великих идей науки. Как устроен наш мир. - читать онлайн бесплатно полную версию (весь текст целиком)

Десять великих идей науки. Как устроен наш мир. - читать книгу онлайн бесплатно, автор Питер Эткинз
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как бы то ни было, революционная, безумная идея Планка о том, что энергия распадается на куски, что она скорее является гранулированной, чем гладкой, что она больше похожа на песок, чем на воду, идея, которой предстояло преобразовать наше восприятие реальности, была встречена молчанием. Сначала ее считали математическим трюком. Физическая реальность этого предложения выявилась только в 1905 г., когда гладиатор Эйнштейн вступил на арену, вынул из ножен свой математический меч и сразил еще одного классического дракона.

Чтобы опознать этого дракона, нам придется снова погрузиться в атмосферу физики конца девятнадцатого века, этого лежбища драконов. На протяжении этого века все уверились, что свет — говоря шире, электромагнитное излучение — является волнообразным: он распространяется как волна. Эта уверенность существовала не всегда. Ньютон, позже поддержанный Лапласом, настаивал на том, что свет является потоком частиц, но экспериментальные свидетельства, полученные в девятнадцатом веке, убедили всех, что свет является волной. Наиболее убедительным свидетельством было явление дифракции , впервые описанное дотошным наблюдателем Леонардо да Винчи (1452-1519) и исчерпывающе и количественно изученное такими авторитетными физиками, как Гюйгенс, Юнг и Френель. Одним из наиболее драматических подтверждений волновой теории света было предсказание того, что в центре тени от сферического или круглого экрана, освещенного с другой стороны, должно находиться пятно света (рис. 7.2). В 1818 г. Огюст Френель (1788-1827) послал работу о теории дифракции на конкурс, проводимый Французской академией. Математик Пуассон, член жюри конкурса, отнесся весьма критично к волновой теории света и вывел из теории Френеля очевидно, абсурдное предсказание, за круглым препятствием должно появляться яркое пятно. Однако другой член жюри, Франсуа Араго, решил поискать яркое пятно Пуассона и обнаружил его экспериментально. В результате Френель выиграл конкурс, а волновая теория света была должным образом принята и стала неопровержимой с виду парадигмой. Итак, драконом оказался волновой характер света.

Рис 72Пятно Пуассона В соответствии с волновой теорией света предсказано - фото 79

Рис. 7.2.Пятно Пуассона. В соответствии с волновой теорией света предсказано, что при помещении непрозрачного диска перед лампой в центре его тени появляется белое пятно.

Эйнштейн сразил дракона в 1905 г., когда показал, что свет все же следует считать состоящим из частиц. Эйнштейновское уничтожение парадигмы состояло из двух частей. Во-первых, он проанализировал термодинамические свойства электромагнитного излучений внутри нагретой полости и показал, что, для того чтобы соответствовать наблюдениям Планка, излучение должно состоять из частиц, а не из волн. Эти частицы света через десятилетие были названы фотонами , и мы будем далее использовать это наименование.

Вышло так, что предположение Эйнштейна встретило немедленную экспериментальную поддержку в виде фотоэлектрического эффекта , при котором электроны испускаются поверхностью металла, подвергаемого ультрафиолетовому облучению. Фотоэлектрический эффект имел некоторые странные свойства, объяснение которых выходило за рамки компетенции теории света. Однако они немедленно получали объяснение, как только этот эффект изображался в виде результата столкновения электрона и подлетающего фотона. Эта модель привела к точному расчету фотоэлектрического эффекта и была одним из достижений, упомянутых при получении Эйнштейном в 1921 г. Нобелевской премии по физике. Это была маленькая совместная шутка судьбы и физики, поскольку мы теперь знаем, как рассчитать фотоэлектрический эффект в терминах электромагнитных волн, так что это частное, подтверждение существования фотонов, все еще воспроизводимое в учебниках (включая написанный мной) как неопровержимое свидетельство, трещит по швам. Однако существование фотонов теперь вне сомнений, поскольку имеются многочисленные свидетельства других видов.

Примирение нового и экспериментально бесспорного взгляда на свет, как на состоящий из частиц, и старого и экспериментально бесспорного взгляда на свет, как на состоящий из волн, когда оно было предложено, оказалось, как можно себе вообразить, весьма трудным. Эта трудность сохраняется даже по сию пору, и мы еще вернемся к ней позже.

Теперь квантовый вирус проник в тело классической физики, и болезнь начала распространяться. Второй вклад Эйнштейна в становление квантовой теории также был сделан в судьбоносные 1905-1907 гг. Этот вклад решал более обыденную загадку, связанную с подъемом температуры материалов при их нагревании. Изучаемым свойством была теплоемкость вещества, представляющая собой меру тепла, требуемого для того, чтобы увеличить его температуру на заданную величину. Еще в 1819 г., с беззаботной уверенностью, которая пришла из разрозненных экспериментальных результатов и находящейся еще в колыбели системы их обработки, французские ученые Пьер-Луи Дюлонг (1785-1838) и Алекси-Терез Пти (1791-1820) объявили, что с поправкой на число атомов в образце все вещества имеют одну и ту же теплоемкость. Все им поверили, хотя это очевидно неверно. Пятьдесят лет спустя, когда стал доступным больший объем данных и физики начали измерять теплоемкость при низких температурах, с неизбежностью стало очевидно, что закон Дюлонга и Пти был плохим описанием природы и, в частности, что все теплоемкости стремятся к нулю при понижении температуры.

Классическая физика могла объяснить закон Дюлонга и Пти с триумфальной легкостью из предположения, что тепло поглощается атомами, колебания которых становятся все более и более сильными. Поэтому представителей классической физики приводила в уныние необходимость признать, что этот закон неверен при низких температурах, а во многих случаях при комнатной температуре тоже. Проблема оставалась неразрешенной до тех пор, пока в 1906 г. на нее не обратил внимание необычайный ум Эйнштейна. Он принял концепцию осциллирующих атомов, но, вторя Планку, ввел решающее предположение, что атомы колеблются с энергиями, возрастающими скачками, как бы прыгая вверх по лестнице энергетических уровней. При низких температурах энергии окружения недостаточно, чтобы заставить атомы осциллировать. При высоких температурах имеется достаточно энергии, чтобы все атомы осциллировали, и теплоемкость выросла до классического значения Дюлонга и Пти. Эйнштейн сумел вычислить зависимость теплоемкости от температуры и получил довольно хорошее согласование с наблюдениями. Через несколько лет его модель усовершенствовал датский физик Питер Дебай (1884-1966), и это усовершенствование, не содержащее существенно новых идей, дало превосходное согласование с экспериментом.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Питер Эткинз читать все книги автора по порядку

Питер Эткинз - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Десять великих идей науки. Как устроен наш мир. отзывы


Отзывы читателей о книге Десять великих идей науки. Как устроен наш мир., автор: Питер Эткинз. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x