Морис Клайн - Математика. Утрата определенности.

Тут можно читать онлайн Морис Клайн - Математика. Утрата определенности. - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Мир, год 1984. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика. Утрата определенности.
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1984
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.8/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Морис Клайн - Математика. Утрата определенности. краткое содержание

Математика. Утрата определенности. - описание и краткое содержание, автор Морис Клайн, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.

Рассчитана на достаточно широкий круг читателей с общенаучными интересами.

Математика. Утрата определенности. - читать онлайн бесплатно полную версию (весь текст целиком)

Математика. Утрата определенности. - читать книгу онлайн бесплатно, автор Морис Клайн
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Но в логике существуют некоторые ясные, интуитивно приемлемые логические принципы или методы, которые можно использовать для вывода новых теорем из старых. Эти принципы входят составными частями в фундаментальную математическую интуицию. Не все из обычных логических принципов приемлемы для фундаментальной интуиции, и следует критически относиться к тому, что считалось приемлемым со времен Аристотеля. Поскольку математики излишне свободно применяли ограниченные законы Аристотеля, те породили антиномии. Что же допустимого или надежного, спрашивали интуиционисты, в математических построениях, если математики временно предали забвению интуицию и работают лишь со словесной структурой?

Итак, интуиционисты принялись анализировать логические принципы, намереваясь установить, какие из них можно принять, чтобы обычная логика соответствовала и надлежащим образом выражала правильные интуитивные представления. В качестве примера логического принципа, применявшегося излишне свободно, Брауэр привел закон исключенного третьего. Этот принцип, утверждающий, что каждое осмысленное высказывание либо истинно, либо ложно, исторически возник в рассуждениях, проводимых применительно к конечным множествам, и был абстрагирован из них. Затем закон исключенного третьего был принят как независимый и априорный принцип и необоснованно распространен на бесконечные множества. Но если для конечногомножества мы можем решить, все ли его элементы обладают некоторым свойством, проверяя один за другим все элементы множества, то для бесконечногомножества такая проверка становится невозможной. Может случиться так, что мы заведомо будем знать, что некий элемент бесконечного множества не обладает интересующим нас свойством, или по определению нам будет известно (или мы сумеем это доказать), что каждыйэлемент множества обладает требуемым свойством. Однако установить с помощью закона исключенного третьего, что каждый элемент множества обладает нужным свойством, нам не удастся никогда, ибо это потребовало бы бесконечного числа проверок.

Так, если доказано, что не все элементы бесконечного множества целых чисел четны, то заключение о существовании (а что означает сам термин «существование») среди них по крайней мере одного нечетного целого числа Брауэр отверг как основанное на применении к бесконечным множествам закона исключенного третьего. Но рассуждения такого типа широко используются в математике для доказательства существования различных сущностей, например для доказательства того, что каждое алгебраическое уравнение имеет корень (гл. IX). Следовательно, многие математические доказательства неприемлемы для интуиционистов. По их утверждениям, такие доказательства слишком неопределенны в отношении тех математических объектов, существование которых они должны доказывать. Закон исключенного третьего может быть использован лишь в тех случаях, когда множество содержит конечное число элементов. Например, если бы мы, рассматривая конечный набор целых чисел, доказали, что они не все четны, то отсюда действительно следовало бы, что по крайней мере одно из чисел нечетно.

Вейль, говоря об интуиционистском взгляде на логику, утверждал:

Согласно его [Брауэра] взглядам и свидетельствам истории, классическая логика была абстрагирована из математики конечных множеств и их подмножеств… Забыв о столь ограниченном происхождении, кто-то впоследствии ошибочно принял логику за нечто, стоящее над математикой и предшествующее всей математике, и, наконец, без всякого на то основания применил логику к математике бесконечных множеств. В этом грехопадение и первородный грех всей теории множеств, за что ее и покарали антиномии. Удивительно не то, что такие противоречия возникли, а то, что они возникли на столь позднем этапе игры.

Несколько позднее Вейль добавил: «Принцип исключенного третьего может быть верным для господа бога, как бы обозревающего единым взглядом бесконечную последовательность натуральных чисел, но не для человеческой логики».

В работе 1923 г. Брауэр привел примеры теорем, которые нельзя считать доказанными, если отрицать применение закона исключенного третьего к бесконечным множествам. {121}В частности, не доказана ни теорема Больцано — Вейерштрасса, утверждающая, что каждое ограниченное бесконечное множество имеет предельную точку, ни теорема о существовании максимума непрерывной функции на замкнутом отрезке. Отвергнутой оказалась и лемма Гейне — Бореля, согласно которой из любого множества отрезков, покрывающих отрезок (взятый вместе с его концами) можно выделить конечную подсистему отрезков, также покрывающих этот отрезок. Разумеется, следствия из всех этих теорем интуиционисты также не считают приемлемыми.

Однако интуиционисты не только отказались от неограниченного использования закона исключенного третьего для доказательства существования математических объектов, но и выдвинули еще одно требование. Они сочли неприемлемым задавать множество свойством, присущим всем его элементам (например, множество, задаваемое признаком «красный», присущим всем элементам этого множества). По мнению интуиционистов, математическому рассмотрению подлежат только конструктивные понятия и объекты, только о них имеет смысл утверждать, что они существуют. Иначе говоря, необходимо указывать метод, позволяющий построить объект или объекты за конечное число шагов (или вычислить с любой требуемой степенью точности). {122}Так, число π , с точки зрения интуиционистов, вполне приемлемо, так как возможно выписать любое число верных знаков его десятичной записи. Если бы нам удалось доказать, что при некотором n > 2 существуют целые числа x, y и z, удовлетворяющие уравнению x n+ y n= z n (т.е. доказать великую теорему Ферма), но мы не могли бы при этом указать конкретные значения чисел n, x, y и z , то интуиционист не принял бы такого доказательства. {123}С другой стороны, определение простого числа конструктивно, так как можно указать метод, позволяющий за конечное число шагов установить, является ли то или иное число простым.

Рассмотрим еще один пример. Числами-близнецами называют простые числа вида l − 2 и l , например 5 и 7, 11 и 13. До сих пор неизвестно, конечно или бесконечно количество пар чисел-близнецов. Пусть теперь l — наибольшее простое число, такое, что l − 2 также простое число, если этому нашему определению отвечает какое-то значение l или же l = 1 , если l , описываемое первым условием, не существует. Классицист сочтет число l вполне определенным независимо от того, известно или не известно, что последняя пара чисел-близнецов существует, так как по закону исключенного третьего такая пара чисел либо имеется, либо нет, — и, значит, l определено либо первым, либо вторым ( l = 1 ) способом. То, что реально мы не в состоянии вычислить l , для неинтуиционистов несущественно. Интуиционист же будет считать приведенное выше «определение» числа l лишенным смысла до тех пор, пока число l нельзя будет вычислить, т.е. пока не будет решена проблема конечности или бесконечности числа пар чисел-близнецов. Требование конструктивности относится, в частности, и к определению бесконечных множеств. Бесконечные множества, построенные с помощью аксиомы выбора, неприемлемы с точки зрения интуиционистов. Как показывают приведенные выше примеры, некоторые из доказательств существования неконструктивны. Следовательно, их необходимо отвергнуть не только потому, что в них может использоваться закон исключенного третьего, но и по другой причине.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Морис Клайн читать все книги автора по порядку

Морис Клайн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика. Утрата определенности. отзывы


Отзывы читателей о книге Математика. Утрата определенности., автор: Морис Клайн. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x