Морис Клайн - Математика. Утрата определенности.
- Название:Математика. Утрата определенности.
- Автор:
- Жанр:
- Издательство:Мир
- Год:1984
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Морис Клайн - Математика. Утрата определенности. краткое содержание
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.
Рассчитана на достаточно широкий круг читателей с общенаучными интересами.
Математика. Утрата определенности. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Существует еще один подход к объяснению взаимосвязи математики и природы. Он также наводит на мысль о некой соответствии, но соответствии особого рода, которое обычно упускают из виду. За последние сто лет возник статистический подход к описанию природы. По иронии судьбы его родоначальником стал Лаплас, твердо веривший в то, что явления природы строго детерминированы в соответствии с математическими законами. Однако причины, вызывающие то или иное явление, как считал Лаплас, не всегда известны, и наблюдения обладают лишь ограниченной точностью. Чтобы определить наиболее вероятные причины и наиболее вероятные результаты, следует воспользоваться теорией вероятностей. «Аналитическая теория вероятностей» (3-е изд — 1820) Лапласа по праву считается классическим трудом по этому разделу математики. История теории вероятностей и математической статистики весьма обширна, и нам нет необходимости входить здесь в излишние подробности (см., например, [130] и — по поводу позиции Лапласа — [131]). Но менее чем за сто лет вероятностно-статистические представления привели к возникновению новых взглядов, согласно которым явления природы не детерминированы, а носят случайный характер, но существует некий наиболее вероятный, средний, режим. Именно его мы и наблюдаем, утверждая, что он детерминирован математическими законами. Поясним сказанное на примере. Продолжительность человеческой жизни колеблется в довольно широких пределах: одни умирают в младенческом возрасте, другие доживают почти до ста лет. Поэтому для всех мужчин и женщин существует не только средняя продолжительность жизни, но и средняя продолжительность жизни по достижении определенного возраста. Строя свою деятельность с учетом этих данных, страховые компании извлекают солидные прибыли. Статистический подход к описанию природы особенно существенное распространение получил в последнее время в связи с развитием квантовой механики, которая утверждает, что не существует «твердых», дискретных, строго локализованных частиц. Каждая частица распределена с определенной вероятностью по всему пространству, но с наибольшей вероятностью она сосредоточена («локализована») в каком-то одном месте.
Согласно статистическим представлениям, математические законы природы описывают в лучшем случае наиболее вероятный режим протекания того или иного явления; однако они не исключают полностью, например, возможности того, что Земля может неожиданно сойти со своей орбиты и отправиться странствовать в глубины космического пространства. Статистический подход как бы оставляет за природой возможность «передумать» и не делать того, что наиболее вероятно. Некоторые философы, занимающиеся проблемами естествознания, пришли к заключению, что необъяснимая эффективность математики остается необъяснимой. Впервые эту точку зрения выразил американский математик, естествоиспытатель и философ Чарлз Сандерс Пирс (1839-1914): «По-видимому, в этом есть какая-то тайна, которую еще предстоит раскрыть».
Эрвин Шредингер в своей книге «Что такое жизнь с точки зрения физики» [132] (1945) признавал, что суть открытия человеком законов природы вполне может быть недоступна человеческому разуму. Другой физик, Фримен Дайсон, также считает, что «мы, по-видимому, еще не приблизились к пониманию взаимосвязи между физическим и математическим мирами». К словам названных ученых остается только добавить высказывание Эйнштейна: «Самое непостижимое в этом мире то, что он постижим» (ср. также [129]).
Лауреат Нобелевской премии по физике Юджин Пол Вигнер, обсуждая в 1960 г. непостижимую эффективность математики в естественных науках в статье под тем же названием, не дал никакого объяснения и ограничился лишь констатацией спорного вопроса:
Математический язык удивительно хорошо приспособлен для формулировки физических законов. Это чудесный дар, который мы не понимаем и которого не заслуживаем. Нам остается лишь благодарить за него судьбу и надеяться, что и в будущих своих исследованиях мы сможем по-прежнему пользоваться им. Мы думаем, что сфера его применимости (хорошо это или плохо) будет непрерывно возрастать, принося нам не только радость, но и новые головоломные проблемы.
([96]*; см. [133], с. 197.)
Последние из приведенных здесь «объяснений» носят скорее характер апологий. Они мало что говорят по существу, но их выразительный язык наводит на мысль, что авторы «объяснений» пребывают в неведении относительно причин непостижимой эффективности математики.
Сколь бы удовлетворительным или неудовлетворительным ни было любое объяснение эффективности математики, важно отчетливо сознавать, что природа и математическое описание природы не одно и то же, причем различие обусловлено не только тем, что математика представляет собой идеализацию (ср. [4] или [134]). Математический треугольник, несомненно, отличается от физического треугольника. Но математика отходит от природы еще дальше. В V в. до н.э. Зенон Элейский сформулировал несколько апорий, или парадоксов. Каковы бы ни были его мотивы, первая же из апорий Зенона великолепно иллюстрирует различие между математической концептуализацией и опытом. Первая апория Зенона утверждает, что бегун никогда не сможет добежать до конца дистанции, так как для этого ему необходимо сначала преодолеть 1/2 дистанции, затем 1/2 оставшейся половины, затем 1/2 половины оставшейся половины и т.д. Следовательно, всего бегуну необходимо преодолеть
1/2 + 1/4 + 1/8 + 1/16 + …
дистанции. Но чтобы преодолеть бесконечно большое число отрезков, бегуну, по мнению Зенона, необходимо затратить бесконечно большое время.
Одно из физических решений, причем наиболее очевидное, этого парадокса состоит в том, что бегун преодолеет всю дистанцию за конечное число шагов. Но если принять математический анализ апории, проделанный Зеноном, то окажется, что на преодоление дистанции бегун должен затратить 1/2 мин плюс 1/4 мин плюс 1/8 мин и т.д., а сумма всех этих промежутков времени в точности равна одной минуте. Такой анализ расходится с физическим процессом, но тем не менее приводит к тому же результату.
Возможно, человек ввел ограниченные и даже искусственные понятия и только таким способом сумел навести порядок в природе. Созданная человеком математика не более чем рабочая схема. Сама природа, возможно, отличается несравненно большей сложностью, или структура ее не обладает особой правильностью. {182}Тем не менее математика остается непревзойденным методом исследования и описания природы, позволяющим овладеть ею. В тех областях, где математика эффективна, она представляет собой все, чем мы владеем; если это и не сама реальность, то самое лучшее приближение к ней, какое только доступно для нас.
Читать дальшеИнтервал:
Закладка: