Морис Клайн - Математика. Утрата определенности.
- Название:Математика. Утрата определенности.
- Автор:
- Жанр:
- Издательство:Мир
- Год:1984
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Морис Клайн - Математика. Утрата определенности. краткое содержание
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.
Рассчитана на достаточно широкий круг читателей с общенаучными интересами.
Математика. Утрата определенности. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
147
Доказательства Кантора и Пеано корректны, если использовать, обычное аксиоматические свойства вещественных чисел. Единственное свойство, которые необходимо изменить, чтобы гипервещественные числа стали возможными, — это аксиома Архимеда, о которой мы уже неоднократно упоминали. Система гипервещественных чисел R* неархимедова в обычном смысле слова. Но она становится архимедовой, если включить в систему гипервещественных чисел бесконечные кратные гипервещественного числа a*.
148
Например, в нестандартном анализе отношение бесконечно малых dy/dx существует в системе R* и для y = x 2 отношение dy/dx равно 2x + dx, где dx — бесконечно малая, т.е. dy/dx — гипервещественное число. Производная функции y = x 2 — это обычная вещественная часть гипервещественного числа dy/dx, т.е. (вещественное) число 2x. Аналогично определенный интеграл в нестандартном анализе есть сумма бесконечно большого числа бесконечно малых (число слагаемых — гипервещественное натуральное число).
149
Сегодня уже существуют задачи, которые удалось решить лишь с использованием нестандартного анализа; правда, видимо, все эти задачи можно было бы решить и традиционными методами, но в таком случае решения были бы, вероятно, значительно более сложными. Вообще, нестандартный анализ надо рассматривать не как новую область математики, а скорее лишь как еще один математический «язык», идущий от Лейбница, но лишь в наши дни ставший равноправным, скажем, с « ε-δ- языком» Коши. При этом язык нестандартного анализа оказывается весьма удобным и естественным в ряде прикладных задач (см., например, [87]; ср. со сказанным в тексте об использовании «бесконечно малых величин» физиками и техниками); ряд преподавателей высшей школы (например, в нашей стране Μ.Μ. Постников) высказывает убеждение в педагогических достоинствах этой модификации лейбницевского «исчисления дифференциалов» при изложении основ «высшей математики» начинающим (ср. [95], [96]).
150
Различие между математикой и «теоретическим» естествознанием полностью осознавал Лейбниц. «Универсальная математика, — писал он, — это, так сказать, логика воображения»; предметом ее является «все, что в области воображения поддается точному определению». В XIX в. специфику математики, отличие ее от естественных (и гуманитарных) наук отчетливо понимали, скажем, замечательный немецкий математик Герман Грассман, говоривший, что «чистая математика есть наука особого бытия, поскольку она рождена в мышлении», или один из создателей математической логики англичанин Джордж Буль, еще четче сформулировавший ту же мысль: «Математика изучает операции, рассматриваемые сами по себе, независимо от различных материй, к которым они могут быть приложены». Я. Бойаи (в отличие от Лобачевского или Гаусса) при создании неевклидовой геометрии подходил к ней не как к возможной системе устройства физической Вселенной, а как к чисто логической схеме, «аксиоматизированной структуре», как сказали бы мы сегодня. При этом любопытно отметить, что Лейбниц (в отличие от Ньютона), Грассман, Буль или Я. Бойаи не получили специального математического образования и были полностью свободны от давления сложившихся традиций, что в чем-то, конечно, ограничивало их возможности, но в то же время придавало их мышлению особую свежесть и остроту.
151
В применениях математики широко используются степенные ряды вида a 0+ a 1x + a 2x 2+ a 3x 3+ … и тригонометрические ряды, или ряды Фурье (скажем, a 0+ a 1 cos x + b 1 sin x + a 2 cos 2x + b 2 sin 2x + … ).
152
В противоположность этому попытки Паскаля заинтересовать Ферма и Гюйгенса теорией вероятностей, в значительной степени созданной этими тремя учеными, оказалась полностью удачными; частично, видимо, это объяснялось тем,что теория вероятностей возникла сразу же как «прикладная» наука (со столь, впрочем, малопочтенной областью применения, как теория азартных игр), а частично, может быть, прозорливой интуицией гениев, «предчувствующих» будущие глубочайшие прикладные возможности создаваемой ими области математической науки.
153
В частности, законы умножения гамильтоновых «кватернионных единиц» i, j и k прояснило идущее от Гамильтона отождествление этих «единиц» с (физическими) вращениями пространства на 90° вокруг трех взаимно перпендикулярный осей: 0x, 0y и 0z .
154
Здесь трудно удержаться от соблазна процитировать одно место из предисловия к книге [100] замечательных математиков и педагогов Д. Пойа (Полиа) и Г. Сегё: «Не нужно забывать, что существуют обобщения двух родов: малоценные и полноценные. Первые — обобщения путем разрежения, другие — путем сгущения. Разредить — значит, наболтав воды, изготовить жиденькую похлебку, сгустить — значит составить полезный, питательный экстракт. Соединение понятий, мало связанных друг с другом для обычного представления, в одно объемлющее есть сгущение; так сгущает, например, теория групп рассуждения, которые прежде, будучи рассеянными… выглядели совершенно различными. Привести примеры обобщения путем разрежения было бы еще легче, но мы не хотим наживать себе врагов».
155
Вожди группы Бурбаки охотно декларировали «антиприкладной» характер своего творчества (ср., например, цитируемую ниже статью [115] Ж. Дьедонне), но к этому их тезису, как и к некоторым другим высказываниям, следует относиться с осторожностью. Известно, что один из основателей (и наиболее влиятельных членов) группы Бурбаки Андре Вейль по просьбе знаменитого антрополога и философа Клода Леви-Стросса написал математическое приложение «Математическая теория брачных союзов» к диссертации Леви-Стросса «Элементарные системы родства» (1949). С другой стороны, весьма близкий группе Бурбаки Рене Том является создателем имеющей огромное прикладное значение так называемой теории катастроф (см. [101]) и отличается поразительной широтой внематематических интересов (см., например, [102]). Кроме того, несмотря на неоднократно декларировавшуюся вождями группы Бурбаки антиприкладную направленность их группы, в целом свойственное этой группе стремление рассматривать математику как науку о математических структурах (см. [11]*) идет навстречу определенным устремлениям в современной прикладной математике, выражающимся в росте значения математического моделирования внематематических феноменов (ср. [103]).
156
Поразительна близость этой позиции Фурье к воззрениям пифагорейцев (гл. I).
157
В последней части «Применение к пространству» замечательной лекции [106] Риман сам подробно обсуждает приложимость к (будущей) физике предложенных им геометрических схем.
Читать дальшеИнтервал:
Закладка: