Морис Клайн - Математика. Утрата определенности.
- Название:Математика. Утрата определенности.
- Автор:
- Жанр:
- Издательство:Мир
- Год:1984
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Морис Клайн - Математика. Утрата определенности. краткое содержание
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.
Рассчитана на достаточно широкий круг читателей с общенаучными интересами.
Математика. Утрата определенности. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Все эти ученые, по мнению Галилея, сначала решали, как должен был бы функционировать мир в соответствии с предустановленными первыми принципами. Галилей же считал, что в физике в отличие от математики источником первых принципов должны быть эксперимент и анализ его результатов. Чтобы получать правильные и фундаментальные первые принципы, физику надлежит с большим вниманием прислушиваться к голосу природы, а не к тому, чему отдает предпочтение разум. Галилей открыто критиковал естествоиспытателей и философов, принимавших те или иные «законы» только потому, что те согласовывались с их априорными представлениями относительно того, как должна была бы вести себя природа. Природа, утверждал Галилей, не сотворила сначала мозг человека, а затем мир так, чтобы он был воспринимаем человеческим разумом. В адрес средневековых схоластов, вторивших Аристотелю и занимавшихся толкованием различных суждений в его сочинениях, Галилей язвительно заметил, что знание берется из наблюдений, а не из книг. Бесполезно спорить об Аристотеле. Те, кого он называл бумажными учеными, хотели бы уподобить естественнонаучные исследования изучению «Энеиды» или «Одиссеи» и превратить науку о природе в свод текстов. «Перед законом природы бессильны любые авторитеты».
Некоторые ученые эпохи Возрождения и современник Галилея Фрэнсис Бэкон (1561-1626) также пришли к выводу о необходимости экспериментального подхода к изучению природы. В этом пункте своей программы Галилей не намного опередил других. {27}Тем не менее Декарт не смог по достоинству оценить мудрость галилеевского подхода с его упором на эксперимент. Наши органы чувств, утверждал Декарт, способны лишь вводить в заблуждение. Только разум может развеять туман подобных заблуждений и постичь истину. Из врожденных первых принципов, постигаемых разумом, мы можем выводить явления природы и понимать их. В действительности, как мы уже упоминали, Декарт в своей научной работе широко использовал эксперимент и требовал, чтобы теория находилась в согласии с экспериментом, однако в своей философии он продолжал связывать истины исключительно разумом.
Мнение Галилея о том, что один лишь разум не может служить источником правильных физических представлений, разделяли лишь немногие физики. Так, взгляды Декарта критиковал Христиан Гюйгенс. С критикой чистого рационализма выступали и английские физики. Обращаясь к членам Королевского общества, Роберт Гук (1635-1705) заявил: «Имея перед глазами так много фатальных примеров ошибок и заблуждений, совершенных большей частью человечества, когда она опиралась только на силу человеческого разума, мы начали теперь проверять все гипотезы свидетельством органов чувств».
Разумеется, Галилей понимал, что эксперимент может привести к неправильному принципу и что дедуктивный вывод из неверного принципа порождал бы ошибочные заключения. Он предлагал и, по-видимому, использовал эксперименты для проверки своих умозаключений и для отбора первых принципов. Но вопрос о том, сколь широко экспериментировал сам Галилей, остается открытым. Некоторые из предложенных им экспериментов иногда называют «мысленными»: Галилей лишь мысленно представлял, что должно получиться в результате такого эксперимента. Тем не менее выдвинутый им принцип, согласно которому физические принципы должны опираться на эксперимент и наблюдение, был революционным и имел решающее значение. Сам Галилей не сомневался в том, что некоторые из принципов, использованных богом при сотворении мира, могут быть постигнуты чистым разумом, но, проложив путь эксперименту, Галилей одновременно заронил и сомнения. Если источником основных принципов естествознания должен быть эксперимент, то не должен ли эксперимент служить источником и математических аксиом? Этот вопрос не беспокоил ни самого Галилея, ни его преемников вплоть до начала XIX в. Математика продолжала наслаждаться своим привилегированным положением.
Свою естественнонаучную деятельность Галилей сосредоточил на проблемах материи и движения. Он независимо от Декарта установил принцип инерции, ныне известный как первый закон движения Ньютона. Галилею удалось также получить законы движения поднимающихся вертикально вверх и падающих тел, движения тел по наклонной плоскости, а также тел, брошенных под некоторым углом к горизонту. Галилей показал, что тело, брошенное под углом к горизонту, движется по параболе. Резюмируя, можно сказать, что Галилей исследовал законы движения земных тел. И хотя, как во всяком большом открытии, у Галилея заведомо были предшественники, никто из них не сознавал с такой ясностью идеи и принципы, которым должно руководствоваться научное исследование, и не проводил эти принципы в жизнь столь просто и эффективно.
Будучи глубоко новаторской по духу, философия и методология науки Галилея подготовила почву для свершений Исаака Ньютона, который родился в тот самый год, когда ушел из жизни Галилей.
III
Математизация науки
Так как во всяком учении о природе имеется науки в собственном смысле лишь столько, сколько имеется в ней априорного познания, то учение о природе будет содержать науку в собственном смысле лишь в той мере, в какой может быть применена в нем математика. {28}
Иммануил Кант
Если убеждение в том, что математические законы естествознания представляют собой истины, органически включенные господом богом в созданный им план Вселенной, и подвергалось каким-то сомнениям, то они были окончательно развеяны Исааком Ньютоном (1643-1727). Хотя Ньютон был профессором математики Кембриджского университета и по праву считается одним из величайших математиков всех времен, его значение как физика превосходит его математическую репутацию. Работы Ньютона положили начало новой эре и послужили основой новой методологии естествознания, отводившей математике более значительную и фундаментальную роль, чем это было прежде.
В трудах Коперника, Кеплера, Декарта, Галилея и Паскаля было доказано, что некоторые явления природы протекают в соответствии с математическими законами. Все эти ученые не только были глубоко убеждены в том, что бог сотворил Вселенную по математическому плану, но и утверждали, что математическое мышление человека согласуется с божественными предначертаниями и потому пригодно для расшифровки этого плана. Философия (или методология) науки, господствовавшая в XVIII в., была сформулирована и подробно разработана Декартом. Именно Декарту принадлежит известное высказывание о том, что вся физика сводится к геометрии, которую и сам Декарт, и другие авторы той поры рассматривали как синоним математики. В то же время картезианство — научная методология Декарта, разделяемая большинством предшественников Ньютона, в том числе Гюйгенсом, отводила естествознанию автономную от математики роль, вменяя в обязанность человеку поиск физических объяснений явлений природы.
Читать дальшеИнтервал:
Закладка: