Морис Клайн - Математика. Утрата определенности.
- Название:Математика. Утрата определенности.
- Автор:
- Жанр:
- Издательство:Мир
- Год:1984
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Морис Клайн - Математика. Утрата определенности. краткое содержание
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.
Рассчитана на достаточно широкий круг читателей с общенаучными интересами.
Математика. Утрата определенности. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
jk = i, kj = −i,
ki = j, ik = −j,
ij = k, ji = −k .
Эти правила означают, что умножение кватернионов не коммутативно, т.е. если p и q — кватернионы, то pq не равно qp. Выполнимо и деление одного кватерниона на другой. Но поскольку умножение кватернионов не коммутативно, то разделить кватернион p на кватернион q означает найти либо такой кватернион r, что р = qr, либо такой кватернион r, что p = rq. Частное r в этих двух случаях не обязательно должно быть одним и тем же; поэтому их и записывают по-разному: в первом случае пишут r = q −1p, a во втором — pq −1 . Хотя кватернионы не получили столь широкого применения, как рассчитывал Гамильтон, ему удалось с их помощью решить немало физических и геометрических задач.
Введение кватернионов явилось еще одним потрясением для математики. Налицо был пример физически полезной алгебры, не обладающей фундаментальным свойством всех известных ранее чисел — здесь не выполнялось правило ab = ba.
Вскоре после того, как Гамильтон создал свои кватернионы, математики, работавшие в других областях, ввели еще более необычные алгебры. Знаменитый алгебраист и геометр Артур Кэли (1821-1895) ввел матрицы — квадратные или прямоугольные таблицы чисел. Над матрицами также можно было производить обычные алгебраические операции, но умножение матриц, как и кватернионов, не было коммутативным. Кроме того, произведение двух матриц могло равняться нулю, даже если оба сомножителя были отличны от нуля. Кватернионы и матрицы ознаменовали начало появления нескончаемой вереницы новых алгебр со все более необычными свойствами. Несколько таких алгебр создал Герман Гюнтер Грассман (1809-1877). По своей общности они превосходили кватернионы Гамильтона. К сожалению, Грассман всю жизнь оставался преподавателем средней школы, и прошло немало лет, прежде чем его работа привлекла заслуженное внимание. Как бы то ни было, Грассман пополнил множество так называемых гиперчисел (или, как сегодня чаще говорят, гиперкомплексных чисел {57}) новыми полезными разновидностями.
Создание новых алгебр для тех или иных специальных целей само по себе не ставило под сомнение истинность обычной арифметики и ее приложений в алгебре и математическом анализе. Кроме того, обычные вещественные и комплексные числа использовались для совершенно разных целей, и их применимость нигде не вызывала сомнений. Тем не менее сам факт появления на сцене новых алгебр заставил усомниться в истинности привычной арифметики и алгебры, подобно тому как люди, узнав об обычаях неизвестной ранее цивилизации, начинают по-новому смотреть на свои собственные обычаи.
Наиболее сильной критике истинность арифметики подверглась со стороны Германа Гельмгольца (1821-1894), выдающегося физиолога, физика и математика. В своей книге «Счет и измерение» (1887) Гельмгольц провозгласил основной проблемой арифметики, обоснование ее автоматической применимости к физическим явлениям. По мнению Гельмгольца, единственным критерием применимости законов арифметики мог быть опыт. Утверждать априори, что законы арифметики применимы в любой данной ситуации, невозможно.
По поводу применимости законов арифметики Гельмгольц высказал немало ценных замечаний. Само понятие числа заимствовано из опыта. Некоторые конкретные опыты приводят к обычным типам чисел: целым, дробным, иррациональным — и к свойствам этих чисел. Однако обычные числа применимы лишь именно к этим опытам. Мы сознаем, что существуют виртуально эквивалентные объекты, и тем самым сознаем, что можем говорить, например, о двух коровах. Но чтобы выражения подобного рода сохраняли силу, рассматриваемые объекты не должны исчезать, сливаться или претерпевать деление. Одна дождевая капля, если ее слить с другой дождевой каплей, вовсе не образует двух дождевых капель. Даже понятие равенства неприменимо автоматически к каждому опыту. Кажется несомненным, что если объект a равен объекту c, а объект b равен объекту c, то объект a должен быть равен объекту b. Но два звука могут казаться по высоте такими же, как третий звук, и все же мы в состоянии отличать на слух первые два звука. Следовательно, два объекта, порознь равные третьему, не обязательно должны быть равны между собой. Аналогично цвет a может казаться таким же, как цвет b, а цвет b — таким же, как цвет c, и все же цвет a иногда удается отличить от цвета c.
Много других примеров можно привести в подтверждение того, что наивное применение арифметики иногда давало нелепые результаты. Так, смешав два равных объема воды — один при температуре 40°C, другой при температуре 50°C, — мы не получим удвоенного объема при температуре 90°. Путем наложения двух гармонических тонов — одного с частотой 100 Гц, другого с частотой 200 Гц — мы не получим гармонический тон с частотой 300 Гц. В действительности составной тон будет иметь частоту 100 Гц. Соединив в электрической цепи параллельно два резистора с сопротивлениями R 1 и R 2 , мы получим сопротивление величиной R 1R 2/ (R 1 + R 2) , a не сопротивление R 1 + R 2. Как в шутку заметил некогда Анри Лебег (1875-1941), поместив в клетку льва и кролика, мы не обнаружим в ней позднее двух животных.
Из химии известно, что, смешивая водород и кислород, можно получить воду. Но если взять два объема водорода и один объем кислорода, то мы получим не три, а два объема водяного пара. Аналогично из одного объема азота и трех объемов водорода мы получим два объема аммиака. Физическое объяснение этой удивительной арифметики ныне известно. По закону Авогадро, в равных объемах любого газа при одинаковой температуре и одинаковом давлении содержится равное число частиц. Например, если в данном объеме кислорода содержится 10 молекул, то при той же температуре и том же давлении в равном объеме водорода содержится также 10 молекул. Следовательно, удвоенный объем водорода содержит 20 молекул. Известно, что молекулы кислорода и водорода двухатомны. Каждая из 20 двухатомных молекул водорода, соединяясь с одним атомом кислорода, образует молекулу воды. Так как всего имеется 10 молекул кислорода, то образуется 20 молекул воды, т.е. два, а не три объема. Таким образом, обычная арифметика не дает правильного описания того, что происходит при смешении газов, если подсчет производить по объемам.
Обычная арифметика не позволяет правильно описать и то, что происходит при смешении некоторых жидкостей. Если кварту джина смешать с квартой вермута, то получится чуть меньше двух кварт смеси. Смешав 1 л спирта с 1 л воды, мы получим 1,8 л спиртового раствора. То же справедливо и для большинства жидкостей, в состав которых входит спирт. Взяв столовую ложку, воды и столовую ложку соли, мы не получим две столовые ложки крепкого раствора соли. При смешивании некоторых химических веществ происходит взрыв — объем смеси заведомо не равен сумме объемов исходных веществ.
Читать дальшеИнтервал:
Закладка: