Морис Клайн - Математика. Утрата определенности.
- Название:Математика. Утрата определенности.
- Автор:
- Жанр:
- Издательство:Мир
- Год:1984
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Морис Клайн - Математика. Утрата определенности. краткое содержание
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.
Рассчитана на достаточно широкий круг читателей с общенаучными интересами.
Математика. Утрата определенности. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Для описания многих физических ситуаций неприменимы не только свойства целых чисел — на практике нередко приходится прибегать к совсем иной арифметике дробных чисел. Рассмотрим, например, футбол, столь любимый миллионами болельщиков во всем мире.
Предположим, что в одной игре нападающий трижды пробил по воротам противника, а в другой игре — четыре раза. Сколько раз всего он бил по воротам противника? Подсчитать нетрудно: всего он бил по воротам противника 7 раз. Предположим, что в первой игре наш нападающий забил 2 гола, а во второй — 3 гола. Сколько голов он забил за две игры? И на этот раз ответ получить легко: за две игры он забил 2 + 3 = 5 голов. Но и болельщиков, и самого игрока обычно интересует средняя результативность,т.е. отношение числа забитых голов к числу ударов по воротам противника. В первой игре это отношение было равно 2/3, во второй — 3/4. Предположим, что нападающий или болельщик хочет по этим данным вычислить среднюю результативность за две игры. Некоторые полагают, что для этого необходимо лишь сложить оба отношения по обычным правилам сложения дробей, т.е. составить сумму:
2/3 + 3/4 = 17/12.
Но полученный таким образом результат явно лишен всякого смысла: ни один нападающий за 12 ударов по воротам противника не может забить 17 голов! Ясно, что обычные правила сложения дробей непригодны для подсчета средней результативности: средняя результативность за две игры не совпадает с суммой средних результативностей, вычисленных для каждой из игр в отдельности. Каким же образом, зная результативность нападающего в каждой из двух игр в отдельности, правильно вычислить среднюю результативность за две игры? Для этого необходимо воспользоваться новым правилом сложения дробей. Мы знаем, что результативность нападающего по двум играм составляет 5/7, а в первой и во второй играх равна соответственно 2/3 и 3/4. Нетрудно видеть, что, сложив отдельно числители и знаменатели слагаемых, мы получим новую дробь, дающую правильный ответ:
2/3 3/4 = 5/7.
(знак плюс, который мы не случайно обвели кружком, означает здесь, что числители и знаменатели суммируются отдельно).
Предложенное нами правило «сложения» дробей оказывается полезным и в других ситуациях. Продавец, ведущий учет эффективности своей торговли, может заметить, например, что в первый день покупки сделали 3 из 5 посетителей, а во второй день — 4 из 7. Чтобы вычислить эффективность торговли за два дня, т.е. найти отношение числа покупок к общему числу посетителей, продавец должен сложить 3/5 и 4/7 по тому же правилу, по которому нападающий вычислял свою результативность за две игры. За два дня покупки сделали 7 посетителей из 12, а 7/12 = 3/5 + 4/7, где знак плюс означает сложение отдельно числителей и отдельно знаменателей.
Еще чаще встречается другое применение нового правила сложения дробей. Предположим, что автомобиль проезжает 50 км за 2 ч и 100 км за 3 ч. С какой средней скоростью автомобиль покрывает оба отрезка пути? Можно было бы рассуждать так: расстояние 150 км автомобиль проезжает за 5 ч, поэтому его средняя скорость составляет 30 км/ч. Но часто бывает удобнее вычислять средние скорости всего пробега по средним скоростям на отдельных участках маршрута. Средняя скорость на первом участке равна (50/2) км/ч, а на втором — (100/3) км/ч. Сложив отдельно числители и знаменатели этих дробей, мы получим правильную среднюю скорость всего пробега.
В обычной арифметике 4/6 = 2/3. Но при сложении двух дробей по новому правилу, например при вычислении 2/3 + 3/5, дробь 2/3 не следует заменять дробью 4/6, так как ответ в одном случае равен 5/8, а в другом — 7/11, и эти два ответа оказываются различными. Кроме того, в обычной арифметике такие дроби, как 5/1 и 7/1, ведут себя также, как целые числа 5 и 7. Но если мы вздумаем сложить 5/1 и 7/1 как дроби, по правилам новой арифметики, то вместо 12/1 получим 12/2.
Приведенные примеры такой «футбольной арифметики» свидетельствуют об одном: вводя операции, отличные от привычных, мы тем не менее можем прийти к арифметике, применимой к реальному миру. Математике известны и многие другие арифметики. Однако ни один здравомыслящий математик не станет изобретать арифметику «просто так», для собственного удовольствия. Каждая арифметика предназначена для описания некоторого класса явлений физического мира. Производимые над числами операции выбираются с таким расчетом, чтобы они соответствовали выбранному классу явлений, подобно тому как в приведенных примерах необычное сложение дробей позволяло вычислять среднюю результативность, эффективность и скорость. Новая арифметика должна облегчать исследование реально происходящего. Только опыт может сказать нам, в каких случаях обычная арифметика применима к тому или иному физическому явлению. Следовательно, мы не можем рассматривать арифметику как свод истин, с необходимостью применимых для описания любых физических явлений. Разумеется, это же относится и к «продолжениям» арифметики — алгебре и математическому анализу. Их также нельзя считать сводом непреложных истин (см., например, [30]).
Итак, математикам не оставалось ничего иного, как прийти к печальному заключению о том, что в математике нет абсолютной истины, т.е. что математика не содержит внутри себя все законы реального мира. Аксиомы основных структур арифметики и геометрии порождены опытом, и поэтому применимость структур арифметики ограничена. Вопрос о том, где именно они применимы, может быть решен только на опыте. Попытка древнегреческих мыслителей обеспечить истинность математики, принимая за исходные самоочевидные истины и используя только дедуктивные доказательства, провалилась.
Для многих мыслящих математиков сознание того, что математика не является более сводом незыблемых истин, было невыносимым, и они не могли смириться с этим. Казалось, сам бог ниспослал им в наказание несколько геометрий и несколько алгебр, подобно тому как он, смешав языки, покарал строителей Вавилонской башни. Такие математики наотрез отказывались принимать новые творения своих собратьев по профессии.
Уильям Р. Гамильтон, несомненно, один из самих выдающихся математиков XIX в., выразил (1837) свое неприятие неевклидовой геометрии следующим образом:
Ни один честный и здравомыслящий человек не может усомниться в истинности главных свойств параллельных в том виде, как они били изложены в «Началах» Евклида две тысячи лет назад, хотя вполне мог бы желать увидеть их изложенными более просто и ясно. Геометрия Евклида не содержит неясностей, не приводит мысли в замешательство и не оставляет разуму сколько-нибудь веских оснований для сомнения, хотя острый ум извлечет для себя пользу, пытаясь улучшить общий план доказательства.
Читать дальшеИнтервал:
Закладка: