Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
- Название:Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
- Автор:
- Жанр:
- Издательство:Астрель: CORPUS
- Год:2010
- Город:Москва
- ISBN:978-5-271-25422-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. краткое содержание
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Позвольте мне устроить небольшой фокус с таблицей 3.1. Я поделю первую колонку на вторую — аргументы на значения. Я не гонюсь за безумной точностью. И вообще буду пользоваться карманным калькулятором за 6 долларов, с которым я хожу в супермаркет. Вот что получается: 100 разделить на 168 даст 5,9524; 1 000 000 разделить на 78 498 даст 12,7392. Еще четыре результата подобного же вычисления дают нам таблицу 3.2.
N | N/π(N) |
---|---|
1 000 | 5,9524 |
1 000 000 | 12,7392 |
1 000 000 000 | 19,6665 |
1 000 000 000 000 | 26,5901 |
1 000 000 000 000 000 | 33,5069 |
1 000 000 000 000 000 000 | 40,4204 |
Таблица 3.2.
Посмотрим пристально на эти значения. Они всякий раз возрастают на 7. Точнее, на число, которое болтается между 6,8 и 7,0. Может, вам это и не кажется чем-то особенно чудесным, но когда математик видит такую таблицу, над головой у него ярко вспыхивает лампочка и определенное слово приходит ему на ум. Позвольте объяснить.
Имеется определенное семейство функций, которые страшно важны в математике, — показательные функции. Не исключено, что вы о них кое-что знаете. Их еще называют «экспоненциальными», и это слово проникло из математики в обычный язык. Мы все надеемся, что наши деньги, вложенные в инвестиционные фонды, будут расти экспоненциально — другими словами, быстрее и быстрее.
С принятой нами точки зрения — иллюстрирования функций двухколоночными таблицами типа таблицы 3.1— можно нестрого определить показательную функцию следующим образом. Если взять набор значений аргумента так, чтобы при переходе от строки к строке они росли как результат регулярного сложения , и если при этом окажется, что получающиеся значения функции растут как результат регулярного умножения , то перед нами — показательная функция. Слово «регулярный» здесь означает, что происходит прибавление одного и того же числа или умножение на одно и то же число.
Рассмотрим пример. Возьмем правило «вычислить 5×5×5×5×… — выражение, содержащее N пятерок».
N | 5 N |
---|---|
1 | 5 |
2 | 25 |
3 | 125 |
4 | 635 |
Видите, как аргумент каждый раз увеличивается путем прибавления 1, в то время как значения каждый раз увеличиваются путем умножения на 5? Это показательная функция. Аргументы увеличиваются «по сложению», а значения — «по умножению».
Я для удобства выбрал вариант, когда аргумент каждый раз увеличивается путем прибавления 1, и буду придерживаться его и далее. Для данной конкретной функции это приводит к умножению аргумента на 5. Разумеется, в числе 5 нет ничего специального. Можно было бы выбрать функцию, в которой множитель равен 2, или 22, или 761, или 1,05 (что, кстати, дало бы таблицу накопления сложных процентов при ставке в 5%), или даже 0,5. В каждом из случаев мы получим показательную функцию. Вот почему я сказал, что имеется некоторое «семейство функций».
Еще один термин, который математики обожают, — «канонический вид». В ситуации, подобной данной, когда имеется явление (в нашем случае — показательная функция), которое может проявляться многими различными способами, есть, вообще говоря, один способ, которым математики желают представить все явление. В данном случае вот какой. Есть одна показательная функция, которую математики предпочитают всем остальным. Если бы вы принялись угадывать, то, наверное, предположили бы, что это та функция, в которой множителем является число 2 — самое простое в конце концов, на что можно умножить. Но нет! Канонический вид показательной функции, предпочтительный для математиков, имеет множитель 2,718281828459045235. Это еще одно магическое число наряду с π, которое проявляет себя во всех областях математики. [17]Оно уже встречалось нам в этой книге (см. главу 1.vii). Оно иррационально [18], так что последовательность знаков после запятой никогда не повторяется и его нельзя переписать в виде дроби. Символ e для этого числа был введен Леонардом Эйлером, о котором будет много всего сказано в следующей главе.
Но почему именно это число? Не слишком ли оно неуклюже, чтобы с его помощью определять канонический вид? Разве не много проще было бы с числом 2? Да, наверное, для целей умножения было бы проще. Я не могу объяснить важность числа e , не вдаваясь в вычисления, а я дал торжественный обет объяснить Гипотезу Римана с минимумом вычислений. По этой причине я просто убедительно попрошу вас принять на веру, что e — действительно, действительно важное число и что ни одна другая показательная функция не может и близко сравниться с этой e N. Вот как выглядит наша таблица:
N | e N |
---|---|
1 | 2,718281828459 |
2 | 7,389056098931 |
3 | 20,085536923188 |
4 | 54,598150033144 |
(здесь точность — 12 знаков после запятой). Основной принцип, конечно, сохраняется — аргументы (левая колонка) растут каждый раз за счет добавления 1; при этом значения в правой колонке каждый раз умножаются на e .
А если наоборот? Представим себе функцию, основанную на таком правиле: когда аргумент растет «по умножению», значения растут «по сложению». Что за функция получится?
Здесь мы вступаем в царство обратных функций. Математики имеют особое пристрастие к тому, чтобы обращать самые разные вещи — выворачивать их наизнанку. Если у есть 8 умножить на x , то как выразить x через y ? Понятно, что это y /8. Деление обратно умножению. Еще есть такое любимое нами действие, как возведение в квадрат, когда мы умножаем число само на себя. И каково же его обращение? Если y = x 2, то чему равен x в терминах y ? Ну да, это квадратный корень из y. Если вы немного знакомы с анализом, то знаете, что есть действие, называемое «дифференцированием», которое позволяет превратить функцию f в другую функцию — g , говорящую о том, какова мгновенная скорость изменения функции f при каждом ее аргументе. И каково же действие, обратное дифференцированию? Это интегрирование. Ну и так далее. Обращение станет ключевой темой позднее, когда мы вникнем в работу Римана 1859 года.
С точки зрения принятого нами подхода, когда функции показаны в виде таблиц, обращение просто означает отражение таблицы, при котором ее правая часть становится левой, а левая — правой. Правда, это быстрый способ нажить себе неприятности. Возьмем функцию возведения в квадрат — скорее всего, первую нетривиальную функцию, с которой вы познакомились в школе. Чтобы возвести число в квадрат, мы умножаем его само на себя. Вот соответствующая таблица:
N | N 2 |
---|---|
−3 | 9 |
−2 | 4 |
−1 | 1 |
0 | 0 |
1 | 1 |
2 | 4 |
3 | 9 |
(Я полагаю, что вы помните о правиле знаков, так что −3 умножить на −3 дает 9, а не −9). [19]А теперь поменяем колонки местами и получим обратную функцию:
Читать дальшеИнтервал:
Закладка: