Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
- Название:Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
- Автор:
- Жанр:
- Издательство:Астрель: CORPUS
- Год:2010
- Город:Москва
- ISBN:978-5-271-25422-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. краткое содержание
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
(Чтобы отдать должное Наполеону, следует заметить, что некоторое время спустя, во время другого похода в западную Германию, когда Гаусс уже обосновался в Геттингене, Император пощадил этот город — потому, что «там живет величайший математик всех времен».)
После потери своего покровителя Гауссу пришлось искать работу. Ему предложили стать директором обсерватории в Геттингене, он согласился и приехал в Геттинген в конце 1807 года. [23]Геттинген уже пользовался достаточной известностью за то, что был оснащен лучше других провинциальных немецких университетов. Гаусс и сам учился здесь с 1795 по 1798 год; во время учебы его, судя по всему, привлекала великолепная университетская библиотека, в которой он и проводил большую часть времени. Теперь же он стал главным университетским астрономом и оставался в Геттингене до своей смерти в феврале 1855 года, последовавшей за несколько недель до его 78-летия. В течение последних 27 лет жизни он выбирался из любимой обсерватории лишь единожды — ради поездки на конференцию в Берлин.
Чтобы рассказать об отношениях, в каких состояли между собой Гаусс и ТРПЧ, надо объяснить главную особенность Гаусса как математика. Он опубликовал намного меньше, чем написал. Из его переписки, сохранившихся неопубликованных статей и различного рода указаний, которые можно найти в опубликованных работах, видно, что он представил миру лишь часть всех сделанных им открытий. Теоремы и доказательства, которые прославили бы кого-нибудь другого, Гаусс оставлял заброшенными в своих личных дневниках.
Есть, наверное, две причины, объясняющие столь вопиющее небрежение. Одна — отсутствие честолюбия. Уравновешенный, самодостаточный и экономный человек, лишенный материальных благ в детстве и юности и так, по-видимому, и не приобретший к ним вкуса в зрелом возрасте, Гаусс не сильно нуждался в чьем бы то ни было одобрении и не стремился к продвижению по социальной лестнице. Другая причина — намного более распространенная среди математиков во все времена — состояла в перфекционизме. Гаусс не мог заставить себя представить свои результаты на суд других, пока эти результаты не окажутся отшлифованы до блеска и расставлены в безупречном логическом порядке. На его личной печати было изображено дерево с редко висящими плодами и девизом «Pauca sed matura» — «Немного, но спелые».
Как я сказал, перфекционизм — частая проблема среди математиков, из-за которой чтение опубликованных математических статей нередко превращается в очень тяжелое занятие. В одной из книг, получивших некоторую известность в современной психологической литературе, «Представление себя в повседневной жизни», Эрвинг Гоффман развивает теорию «социальной драматургии», согласно которой каждый результат деятельности, создаваемый «для внутреннего пользования» в беспорядке и не без вмешательства случайности, представляется «для внешней аудитории» в виде законченного и совершенного творения. Эту мысль хорошо иллюстрируют рестораны. Блюда, приготовленные среди стука и звона посуды, криков поваров в раскаленной кухне, предстают перед публикой как творения безупречно сервированные, на сверкающих тарелках, подаваемые проворными мурлыкающими официантами. В значительной своей части так же устроен и интеллектуальный труд. Вот что пишет Гоффман:
В тех взаимодействиях, где индивид представляет результат своей деятельности другим людям, он склонен обнародовать только конечный продукт; они же судят о нем на основе вещей законченных, отполированных и расфасованных. В ряде случаев, если для завершения деятельности было достаточно лишь очень небольшого усилия, этот факт будет скрыт. В других случаях сокрытию подлежат долгие, изнурительные часы одинокого труда…
Опубликованные математические статьи нередко содержат слегка раздражающие высказывания типа «Отсюда следует, что…» или же «Ясно, что…», тогда как в действительности совершенно не следует и абсолютно не ясно, пока вы не потратите те же шесть часов, что потратил автор, на прописывание промежуточных шагов и проверку их правильности. Об английском математике Г.X. Харди, с которым мы еще встретимся ниже, рассказывают такую историю. Дойдя на лекции до определенного места в своих рассуждениях, он сказал: «Теперь очевидно, что…» Тут он остановился, замолчал и несколько секунд простоял без движения с нахмуренными бровями. Потом вышел из аудитории. Минут через двадцать он вернулся, улыбаясь, и продолжил: «Да, действительно, очевидно, что…»
Но кроме отсутствия амбиций Гаусс демонстрировал и отсутствие такта. Он нажил массу неприятностей в общении с коллегами-математиками из-за того, что ссылался на открытия, которые он сделал, но не опубликовал за годы до того, как другие открывали то же самое, однако публиковали свои результаты. Дело было не в тщеславии — Гауссу не было свойственно тщеславие, — а в том, что доктор Джонсон называл «грубой бесчувственностью». Например, в опубликованной в 1809 году книге Гаусс ссылается на метод наименьших квадратов, придуманный им в 1794 году (способ найти наилучшую «подгонку» для некоторого количества экспериментальных данных). В момент, когда он сделал это открытие, он его, разумеется, не опубликовал. Принадлежащий к чуть более старшему поколению французский математик Адриен-Мари Лежандр открыл и опубликовал этот метод в 1806 году; он был разъярен, когда Гаусс приписал приоритет открытия себе. У нас нет сомнений в правоте Гаусса — тому имеются документальные подтверждения, — но если Гаусс желал, чтобы его имя ассоциировалось с этим результатом, ему надо было его опубликовать. Он, однако, не беспокоился, будет ли увековечено его имя, и не намеревался публиковать свои результаты, если ему не хватало времени отполировать их до полного совершенства.
В декабре 1849 года Гаусс вел переписку с немецким астрономом Йоханом Францем Энке (именем которого названа знаменитая комета) [24]Энке высказал кое-какие комментарии по поводу частоты появления простых чисел. Ответное письмо Гаусса начиналось так:
Любезное сообщение о ваших наблюдениях по поводу частоты появления простых чисел заинтересовало меня более, чем просто упоминание. Оно напомнило мне мои собственные изыскания по тому же предмету, начало которым было положено в далеком прошлом, в 1792 или 1793 году. <���…> Одна из первых вещей, которые я сделал, состояла в том, что, обратив внимание на уменьшающуюся частоту, с которой появляются простые числа, я их вычислил в нескольких группах из тысячи чисел и бегло набросал результаты, листок с которыми прилагаю к письму. Я вскоре осознал, что при всех своих флуктуациях эта частота в среднем близка к величине, обратно пропорциональной логарифму … (Курсив мой. — Дж. Д. ) С тех пор я время от времени (поскольку мне недостает терпения, чтобы последовательно посчитать весь интервал) уделяю свободные четверть часа, чтобы то тут, то там пересчитать еще один отрезок длиной в тысячу; но в конце концов я забросил это дело, не добравшись толком и до миллиона.
Читать дальшеИнтервал:
Закладка: