Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
- Название:Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
- Автор:
- Жанр:
- Издательство:Астрель: CORPUS
- Год:2010
- Город:Москва
- ISBN:978-5-271-25422-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. краткое содержание
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Здесь на самом деле происходит несколько вещей сразу, и важно четко их разделять.
Во-первых, не следует смешивать а) высоту вдоль критической прямой и б) число нулей . «Высота» означает просто мнимую часть комплексного числа: высота числа 3 + 7 i равна 7. При рассмотрении нулей дзета-функции принято обозначать высоту буквой t или T . (Поскольку мы знаем, что нули симметричны относительно вещественной оси, мы интересуемся только положительными t ). Имеется формула для числа нулей вплоть до высоты T :
N(T) = T/ 2π ∙ln ( T/ 2π ) − T/ 2π+ Ο (ln T )
Это на самом деле очень хорошая формула (первые два слагаемых в ней принадлежат Риману): она дает превосходное приближение уже для достаточно малых значений T . Если не обращать внимания на член с Ο большим [147], то для T , равного 100, 1000 и 10 000 она дает соответственно 28,127, 647,741 и 10 142,090. Истинное же число нулей на этих высотах составляет 29, 649 и 10 142. Чтобы получить значение N(T) величиной в 100 миллиардов, как у Веденивски, требуется взять T равным 29 538 618 432,236… — до такой высоты Веденивски и добрался в своих исследованиях.
Далее, имеется путаница по поводу того, что именно вычисляется. Не предполагается, что Веденивски способен предъявить все 100 миллиардов этих нулей, вычисленных с высокой (или даже со средней) точностью. Цель подобных исследований состоит главным образом в подтверждении Гипотезы Римана, а это можно сделать, не прибегая к высокоточным вычислениям нулей. Имеются некоторые теоретические построения, позволяющие вычислить, сколько нулей имеется в критической полосе между высотами T 1и T 2— т.е. внутри прямоугольника, верхняя и нижняя стороны которого задаются числами T 1и T 2, отложенными вдоль мнимой оси, а левая и правая сторона — числами 0 и 1 на вещественной оси, как показано на рисунке 16.1. Имеется и другое теоретическое построение, которое позволяет вычислить, сколько нулей расположено на критической прямой между данными высотами. [148]Если два вычисления дают один и тот же результат, то можно считать, что вы тем самым подтвердили Гипотезу Римана в данном интервале. Это можно сделать, имея лишь грубое знание о том, где на самом деле расположены нули. Большая часть таблицы 16.1относится к работе такого сорта.
Рисунок 16.1.Высоты T 1и Т 2на критической полосе.
А как обстоит дело с табулированием точных положений нулей? Оказывается, помимо того, что делалось в связи с проверкой Гипотезы Римана, в этой задаче сделано на удивление мало. Насколько мне вообще известно, первые сколько-нибудь длинные таблицы такого рода были опубликованы Брайаном Хейзелгровом. В 1960 году, работая на мощных компьютерах второго поколения в университетах Кембриджа и Манчестера в Англии, Хейзелгров с сотрудниками затабулировали первые 1600 нулей с точностью до шести знаков после запятой и опубликовали эту таблицу. Эндрю Одлыжко сообщил мне, что, когда он в конце 1970-х годов начинал исследования нулей дзета-функции, таблицы Хейзелгрова были единственными известными ему данными такого рода, хотя он и думает, что Леман в ходе своей работы в 1966 году мог в действительности с высокой точностью вычислить большее количество нулей. У самого Эндрю есть таблица (на диске компьютера, а не в печатном варианте) первых двух миллионов нулей с точностью до девяти знаков после запятой. На момент написания этой книги это наибольшая из известных таблиц нулей.
Вся описанная выше деятельность относится к первым N нулям. Кроме этого, Эндрю Одлыжко совершил несколько «прыжков» вверх с целью исследовать небольшие изолированные отрезки на очень больших высотах. Он опубликовал результат вычисления самого высокорасположенного нетривиального нуля дзета-функции из известных на данный момент — это 10 000 000 000 000 000 010 000-й нуль. С точностью до пяти знаков после запятой в мнимой части он расположен в точке 1/ 2+ 1 370 919 909 931 995 309 568,33539 i . Эндрю вычислил и первые 100 нулей с точностью до тысячи знаков после запятой. [149]Первый нуль начинается как (имеется в виду, конечно, мнимая часть):
14,134725141734693790457251983562470270784257115699243175685567460149963429809256764949010393171561012779202971548797436766142691469882254582505363239447713778041338123720597054962195586586020055556672583601077370020541098266150754278051744259130625448….
За таблицей 16.1скрываются разнообразные истории. Фигурирующий там А.М. Тьюринг, например, — это тот самый Алан Тьюринг, который работал в области математической логики, разработав идею теста Тьюринга (способ решить, обладает ли компьютер или программа интеллектом) и машину Тьюринга (идеализированный компьютер, некий вариант мысленного эксперимента, позволяющий решать определенные задачи в математической логике). Имеется Премия Тьюринга, которую начиная с 1966 года ежегодно присуждает Ассоциация вычислительной техники за достижения в области программирования и прикладной математики, — аналог Филдсовской медали по математике или же Нобелевской премии в других науках. [150]
Тьюринг был зачарован Гипотезой Римана. К 1937 году (когда ему было 26 лет) он составил мнение, что Гипотеза не верна, и вынашивал идею построения механического вычислительного устройства, которое позволило бы найти контрпример — нуль вне критической прямой. Он подал заявку на грант в Королевское общество с тем, чтобы покрыть расходы на создание этого устройства, и даже сам выточил несколько зубчатых колес на инженерном факультете Кингс-колледжа в Кембридже, где он тогда преподавал.
Работа Тьюринга по созданию «дзета-функциональной машины» резко прервалась в 1939 году, когда разразилась Вторая мировая война. Он перешел работать в Британскую школу кодов и шифров [151]в Блетчли-Парк и провел там все годы войны, посвятив себя раскрытию немецких военных шифров. Однако некоторые из зубчатых колес сохранились — они остались среди его вещей после смерти ученого, последовавшей (как считается, в результате самоубийства) 7 июня 1954 года.
При том, насколько печальной и необычной была смерть Тьюринга (он съел яблоко, в которое сам ввел цианистый калий), он снискал себе посмертную славу стараниями биографов. Эндрю Ходжес написал о нем замечательную книгу («Алан Тьюринг: Энигма», 1983), а Хью Уайтмор сделал по ней чрезвычайно интересную пьесу («Разгадка шифра», 1986).
У меня нет возможности вдаваться глубже в подробности жизни Тьюринга. Я отсылаю читателя к биографии, написанной Ходжесом, из которой процитирую только следующее:
15 марта [1952 года] он направил для публикации работу по вычислению дзета-функции, несмотря на то что предпринятая ранее практическая попытка такого вычисления на прототипе компьютера в Манчестерском университете оказалась неудовлетворительной. Возможно, он просто хотел закончить с этим делом на тот случай, если ему придется отправиться в тюрьму.
Читать дальшеИнтервал:
Закладка: