Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Тут можно читать онлайн Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Астрель: CORPUS, год 2010. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
  • Автор:
  • Жанр:
  • Издательство:
    Астрель: CORPUS
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-271-25422-2
  • Рейтинг:
    4.38/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. краткое содержание

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - описание и краткое содержание, автор Джон Дербишир, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - читать онлайн бесплатно ознакомительный отрывок

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Джон Дербишир
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Отсюда получается, что все свойства функции распределения простых чисел π некоторым образом закодированы в функции ζ . Достаточно тщательное исследование свойств функции ζ подскажет нам все, что мы хотим узнать про функцию π , другими словами, про распределение простых чисел.

Как же все это на самом деле работает? Какова программа действий? Где в ней найдется место тем самым нетривиальным нулям? И как выглядит этот «посредник» — функция J — когда он переписан через функцию ζ ? Ответ на последний вопрос я замял в конце главы 19.

II.

Я замял ответ на этот вопрос по вполне уважительной причине, которая сейчас станет ясной. Выражение (21.1)содержит результат этого второго обращения, окончательное и точное выражение функции J(x) через дзета-функцию:

Вот с чем предстоит иметь дело. Если вы не математик, то перед вами — страшный монстрик (и где, кстати, в нем сидит дзета-функция?). Я собираюсь разобрать эту штуку на кусочки, один за другим, и показать, что творится у нее внутри. Но прежде всего сообщу, что это равенство и составляет основной результат статьи Римана 1859 года. Если вы сможете его одолеть, то поймете суть того, что сделал Риман в этой области, и получите ясное представление обо всем, что было после.

Первое, что надлежит заметить, — это что правая часть выражения (21.1)состоит из четырех частей, или членов. Первый член, Li (x) , носит общее название главного члена. Про второй член, имеющий вид ∑ ρ Li (x ρ) , Риман говорил во множественном числе как о «периодических членах» (periodischer Gleider) — по причинам, которые вскоре выяснятся; мы будем говорить о нем в единственном числе как о «вторичном члене». Третий член в нашей формуле — дело нехитрое. Это просто число, ln 2, равное 0,69314718055994…

С четвертым членом, несмотря на страх, который он наводит на нематематиков, разобраться на самом деле несложно. Он представляет собой интеграл, т.е. площадь под кривой, описывающей некоторую функцию, причем площадь вычисляется от аргумента x и аж до самой бесконечности. Функция здесь — это, разумеется, 1/( t ( t 2 − 1)ln t ). Нарисовав ее график (рис. 21.1), мы убеждаемся, что она очень даже отзывчива в отношении того, чего мы от нее хотим. Надо только помнить, что нас совершенно не волнуют значения аргументах, меньшие 2, поскольку J(x) равна нулю, когда x меньше двойки. Поэтому при x = 2 показанная на рисунке затемненная область — это максимальное значение, которого вообще может достигать этот интеграл (т.е. четвертый член в формуле). Площадь затемненной области, т.е. максимальное значение четвертого члена при любых x , которые вообще могут нас интересовать, составляет в действительности 0,1400101011432869….

Рисунок 211Четвертый член в выражении Римана для Jx Таким образом взятые - фото 150

Рисунок 21.1.Четвертый член в выражении Римана для J(x).

Таким образом, взятые вместе (с учетом знаков) третий и четвертый члены ограничены интервалом от −0,6931… до −0,5531…. Поскольку изучаемая нами функция π(x) по-настоящему интересна только для миллионов и триллионов, эффект от этих двух членов невелик, так что мы практически ничего не будем о них говорить, а сконцентрируемся на двух первых членах.

Главный член тоже не представляет особой проблемы. В главе 7.viii мы уже определили функцию Li (x) как площадь под кривой 1/ln t , измеряемую от нуля до x ; мы также привели Теорему о распределении простых чисел (ТРПЧ) в виде π(N) ~ Li (N). В нашем главном члене x — вещественное число, а потому значение Li (x) можно взять из математических таблиц или же вычислить с помощью любой нормальной математической программы, типа Maple или Mathematica. [193]

Разобравшись таким образом с первым, третьим и четвертым членами в выражении (21.1), мы сфокусируемся на втором, имеющем вид ∑ ρ Li (x ρ) . В нем — корень происходящего, и дело тут нешуточное. Сначала я в общих чертах расскажу, что он означает и как он попал в выражение (21.1). А потом разберу его на части и покажу, почему он играет ключевую роль для понимания распределения простых чисел.

III.

Знак ∑ — это приглашение к тому, чтобы суммировать, т.е. складывать многое в одно. На множество, по которому производится суммирование, указывает маленькая буква ρ под знаком ∑. Эта буква — не латинская p , а ро — семнадцатая буква греческого алфавита, причем в данном случае она фигурирует в значении «корень». [194]Для вычисления этого вторичного члена надо сложить друг с другом Li (x ρ) для всех корней, по очереди придавая букве ρ значение, равное каждому из корней. Что это, кстати говоря, за корни? Ясное дело, ведь это нетривиальные нули дзета-функции Римана!

Как же все эти нули попали в выражение для J(x) ? Объяснить это я могу лишь в общих чертах. Вспомним выражение, которое мы, повернув Золотой Ключ, получили в главе 19:

Мы говорили что у математиков есть способ обратить это выражение вывернуть - фото 151

Мы говорили, что у математиков есть способ обратить это выражение — вывернуть его наизнанку, т.е. выразить J(x) через дзета-функцию. Процедура обращения в действительности и длинна, и сложна; в большинстве из составляющих ее шагов задействована математика, выходящая за рамки того, что приводится в этой книге. Поэтому-то я и перескочил прямо к окончательному результату — выражению (21.1). Тем не менее, как мне кажется, я в состоянии объяснить одну часть этой процедуры. Дело в том, что один шаг в этом обращении заключается как раз в выражении дзета-функции через ее нули.

Сама по себе идея выражения функций через их нули не несет в себе особой новизны для тех, кто изучал алгебру в старших классах. Рассмотрим старые добрые квадратные уравнения, выбрав в качестве примера то, которое мы использовали в главе 17.iv, а именно z 2− 11 z + 28 = 0 (однако будем писать букву z вместо x , поскольку сейчас мы находимся в царстве комплексных чисел). Левая часть этого уравнения, разумеется, представляет собой функцию, причем полиномиальную функцию (т.е. многочлен). Если мы подставим в нее любое значение аргумента z , то после выполнения определенных арифметических действий получим значение функции. А если, скажем, мы подставим аргумент 10, то значением функции будет 100 − 110 + 28, что дает 18. Если подставим аргумент i , то значением функции будет 27 − 11 i .

А каковы решения уравнения z 2− 11 z + 28 = 0? Как мы видели в главе 17, это 4 и 7. При подстановке любого из этих чисел в левую часть уравнение превращается в верное равенство, поскольку левая часть оказывается равной нулю. Другой способ выразить то же самое — это сказать, что 4 и 7 являются нулями функции z 2− 11 z + 28.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джон Дербишир читать все книги автора по порядку

Джон Дербишир - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. отзывы


Отзывы читателей о книге Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике., автор: Джон Дербишир. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x