Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Тут можно читать онлайн Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Астрель: CORPUS, год 2010. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
  • Автор:
  • Жанр:
  • Издательство:
    Астрель: CORPUS
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-271-25422-2
  • Рейтинг:
    4.38/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. краткое содержание

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - описание и краткое содержание, автор Джон Дербишир, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - читать онлайн бесплатно ознакомительный отрывок

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Джон Дербишир
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
V.

А теперь мы найдем, одно за одним, значения функции Li во всех этих точках — во всем бесконечном числе этих точек. К сожалению, это комплексные числа, а мы определили функцию Li только для вещественных чисел — как площадь под кривой. Имеется ли способ определить Li также и для комплексных чисел? Что из себя представляют интегралы для комплексных чисел? Да, способ определить эту функцию есть; и, кроме того, да, существует способ интегрировать, когда в этом деле участвуют комплексные числа. Интегрирование на самом деле представляет собой один из важнейших элементов комплексного анализа, объект самых прекрасных и мощных теорем во всем этом разделе. Не вдаваясь в подробности, я скажу только, что, да, функция Li (z) определена [198]для комплексных чисел z .

На рисунке 21.3 показано, куда функция Li отображает первые 10 точек, изображенных на рисунке 21.2. Другими словами, (точнее, ее отрезок от 1/ 2+ 14 i до 1/ 2+ 50 i ). Как видно, эта функция отображает критическую прямую в спираль, идущую против часовой стрелки и приближающуюся к числу πi по мере того, как аргумент взбирается вверх по критической прямой. Там, где функция 20 z бесконечно много раз наматывала и наматывала критическую прямую на окружность радиуса √20, применение функции Li разматывает ее в изящную спираль; на ней по-прежнему нарисованы точки, изображающие нули.

Рисунок 21.3.Функция Li(20 z ) для отрезка критической прямой.

VI.

Теперь примемся за знак сигмы, где надо суммировать эти точки (каждая из которых — просто комплексное число) по всем возможным нетривиальным нулям дзета-функции. Для этого сначала вспомним один момент, который мы до сих пор практически игнорировали. Для каждого нетривиального нуля, расположенного на северной половине критической прямой, имеется соответствующий нуль на ее южной части. Если, например, 1/ 2+ 14,134725 i — нуль дзета-функции, то нулем должно быть и число 1/ 2− 14,134725 i . На чисто математическом языке можно сказать, что если z — нуль, то и его комплексное сопряжение z' также есть нуль. (Мы помним, что z' произносится как «зет-с-чертой». {2} Сейчас может оказаться нелишним взглянуть на рисунок 11.2и освежить в памяти основные факты о комплексных числах.)

При выполнении суммирования южная часть критической полосы играет ключевую роль. На рисунках 21.2и 21.3были показаны лишь первые несколько нулей вдоль северной половины критической прямой. Для создания более полной картины, включающей и южную половину этой прямой, в самой левой части рисунка 21.4 показана плоскость комплексных чисел с отмеченной критической полосой от 1/ 2− 15 i до 1/ 2+ 15 i . Этого достаточно, чтобы был виден первый нуль при 1/ 2+ 14,134725 i , а также его комплексное сопряжение 1/ 2− 14,134725 i . Они отмечены буквами ρ и ρ' .

Рисунок 21.4.Критическая прямая, продолженная до первой пары нетривиальных нулей, и ее отображение сначала с помощью функции 20 z , а затем с помощью функции Li(20 z ).

Рассматривая эту плоскость как плоскость аргумента для функции 20 z , мы получаем на средней части рисунка 21.4картинку типа «сюда» в плоскости значений — окружность радиуса √20, где, как и на рисунке 21.2, отмечено 20 ρ , а наряду с этим отмечено еще и 20 ρ' . Заметим, что, когда аргументы комплексно сопряжены друг другу, сопряжены и значения функции. Такое происходит не со всеми функциями, но, по счастью, происходит с функцией 20 z. Если мы применим функцию Li, на этот раз используя в качестве ее плоскости аргумента среднюю часть рисунка 21.4, то мы увидим, что критическая прямая, которая намоталась на эту окружность бесконечное число раз под действием функции 20 z , теперь разматывается в симпатичную двойную спираль в правой части рисунка. (Рисунок 21.3представлял собой «наезд камеры» на верхнюю часть этой спирали.) И по-прежнему, когда аргументы комплексно сопряжены друг другу, сопряжены и значения.

Осталось заметить еще только одну вещь перед тем, как мы приступим к сумме ∑ ρ Li(20 ρ ). Показанная спираль — что лучше всего видно из рисунка 21.3— стремится к точке своего назначения не слишком быстро. Скорость, с которой она сходится, по сути дела гармоническая: если представить себе, что муравей Арг шагает на север по критической прямой, а на его приборчике выставлена функция Li(20 ρ ), то муравей Знач будет двигаться по спирали, постепенно приближаясь к точке πi — приближаясь на расстояние, обратно пропорциональное высоте, на которую забрался муравей Арг. Если последний вскарабкался на высоту T , то муравей Знач будет находиться от точки πi примерно на расстоянии, пропорциональном 1/ T .

Имея это в виду, мы теперь готовы взяться за сумму ∑ ρ Li(20 ρ ). Сложению подлежат комплексные числа, соответствующие всем нашим точкам на спирали, изображенной на рисунке 21.3, а также их комплексно сопряженным точкам на соответствующей южной части спирали. Поскольку для каждой точки северной спирали имеется ее зеркальное отображение на южной, все мнимые части сократят друг друга: для каждого a + bi найдется соответствующее abi, так что при их сложении получится просто 2a . Ну и отлично, потому что J(x) — вещественное число, и решительно не годится иметь мнимые слагаемые в правой части выражения (21.1)! Это и вправду хорошая новость, потому что она означает, что складывать надо только вещественные (т.е. западно-восточные) части точек на рисунке 21.3. Вклад южного полушария сводится просто к тому, что ответ удваивается, т.е. (a + bi) + (a − bi) = 2а.

Остальные новости похуже. Точки, раскиданные по спирали на рисунке 21.3, как уже было замечено, сходятся к числу πi — а их вещественные части, стало быть, сходятся к нулю — с гармонической скоростью. Сложение вещественных частей всех этих точек, следовательно, чревато опасностью, что мы будем складывать нечто вроде гармонического ряда, который, как мы помним из главы 1, расходится. Откуда нам знать, что сумма ∑ ρ Li(20 ρ ) сходится?

Делу помогает тот факт, что вещественные части этих точек то положительны, то отрицательны. На самом деле наша сумма похожа не на гармоническую сумму, а на ее близкого родственника, с которым мы бегло встречались в главе 9.vii:

1 − 1/ 2+ 1/ 3− 1/ 4+ 1/ 5− 1/ 6+ 1/ 7− …

Слагаемые здесь приближаются к нулю гармонически: 1, 1/ 2, 1/ 3, 1/ 4, 1/ 5, …, но чередующиеся знаки плюс и минус означают, что каждый следующий член до некоторой степени сокращает предыдущий, что и приводит к сходимости. Но эта сходимость, если использовать введенную в главе 9.vii терминологию, лишь условна. Она зависит от суммирования всех членов в правильном порядке.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джон Дербишир читать все книги автора по порядку

Джон Дербишир - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. отзывы


Отзывы читателей о книге Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике., автор: Джон Дербишир. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x