Иэн Стюарт - Истина и красота. Всемирная история симметрии.

Тут можно читать онлайн Иэн Стюарт - Истина и красота. Всемирная история симметрии. - бесплатно ознакомительный отрывок. Жанр: Математика. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Истина и красота. Всемирная история симметрии.
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.56/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Иэн Стюарт - Истина и красота. Всемирная история симметрии. краткое содержание

Истина и красота. Всемирная история симметрии. - описание и краткое содержание, автор Иэн Стюарт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов. Эксцентричный Джироламо Кардано — игрок и забияка эпохи Возрождения, первым решивший кубическое уравнение, гениальный невротик и революционер-неудачник Эварист Галуа, в одиночку создавший теорию групп, горький пьяница Уильям Гамильтон, нацарапавший свое величайшее открытие на каменной кладке моста, и, конечно же, великий Альберт Эйнштейн — судьбы этих неординарных людей и блестящих ученых служат тем эффектным фоном, на котором разворачивается один из самых захватывающих сюжетов в истории науки.

Истина и красота. Всемирная история симметрии. - читать онлайн бесплатно ознакомительный отрывок

Истина и красота. Всемирная история симметрии. - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Иэн Стюарт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Совет фон Неймана оказался очень хорош. Если атом обладает некоторым числом электронов, то, поскольку все электроны тождественны, атом «не знает», какой электрон какой. Другими словами, уравнения, описывающие излучение, испущенное данным атомом, должны быть симметричны относительно всех перестановок его электронов. Используя теорию групп, Вигнер разработал теорию спектра атомов с любым числом электронов.

До этого момента его работа шла в традиционном русле классической физики. Но все по-настоящему захватывающее творилось в квантовой теории. Тогда Вигнер и принялся за главный труд своей жизни — применение теории представлений групп к квантовой механике.

Занятно, что занимался он этим несмотря на свою новую работу, а не благодаря ей. Мэтр немецкой математики Давид Гильберт выказывал живой интерес к математическим принципам, лежащим в основе квантовой теории, и ему в работе требовался ассистент. В 1927 году Вигнер отправился в Геттинген и был принят там в возглавляемую Гильбертом исследовательскую группу. По идее, его роль должна была состоять в том, чтобы поддерживать связь с физикой, которая подпитывала бы обширные математические таланты Гильберта. На деле же получилось не совсем так, как задумывалось. Гильберт и Вигнер виделись за год всего пять раз. Гильберт был уже стар, утомлен и все более склонялся к уединению. Так что Вигнер вернулся в Берлин, прочитал лекции по квантовой механике и продолжил работу над своей самой знаменитой книгой «Теория групп и ее применения к квантовой механике атомных спектров».

Его частично предвосхитил Герман Вейль, также написавший книгу о группах в квантовой теории. Но основной интерес Вейля концентрировался на фундаментальных вопросах, тогда как целью Вигнера было решение конкретных физических задач. Вейль гнался за красотой, а Вигнер искал истину.

Подход Вигнера к теории групп можно понять в простом классическом контексте — на примере колебаний барабана. Музыкальные барабаны, как правило, округлые, но в принципе могут быть любой формы. При ударе палочкой мембрана барабана начинает вибрировать и создает звук. Барабаны различных форм производят различные звуки. Полоса частот, которые может создать данный барабан, называемая его спектром, сложным образом зависит от его формы. Если барабан симметричен, то можно ожидать, что симметрия появится и в его спектре. Она там и появляется, но довольно тонким образом.

Представим себе прямоугольный барабан — из числа тех, какие нечасто увидишь за пределами математических факультетов. Типичные колебания такого барабана разбивают его поверхность на некоторое число меньших прямоугольников, как, например, показано на рисунке.

На рисунке мы видим различные картины колебаний с двумя различными частотами. Это мгновенные снимки этих колебаний. Темные области смещены вниз, а светлые — вверх.

Две картины колебаний прямоугольного барабана Из симметрий барабана вытекают - фото 52

Две картины колебаний прямоугольного барабана.

Из симметрий барабана вытекают следствия для картин колебаний, поскольку любое преобразование симметрии барабана можно применить к любой возможной картине колебаний, что даст другую возможную картину колебаний. Таким образом, каждая картина колебаний включается в набор других, связанных с ней в соответствии с симметрией. Однако каждая отдельная картина колебаний не обязана иметь те же симметрии, что и барабан. Например, прямоугольник симметричен относительно вращения на 180°. Если применить это преобразование симметрии к двум приведенным выше картинам, они примут вид, показанный на рисунке.

Левая картина не изменилась, так что она, как и барабан, обладает симметрией относительно данного вращения. Но на правой темные и светлые области поменялись местами. Этот эффект называется спонтанным нарушением симметрии, и он очень распространен в физических системах: он возникает, когда в симметричной системе имеются состояния с более низкой симметрией. Левая картина не нарушает симметрии, а правая — нарушает. Посмотрим внимательно на правую картину и разберемся, что следует из ее нарушенной симметрии.

Те же две картины колебаний прямоугольного барабана после поворота барабана на - фото 53

Те же две картины колебаний прямоугольного барабана после поворота барабана на 180°.

Хотя исходная картина и результат ее поворота не совпадают, обе осуществляют колебания на одной и той же частоте, поскольку поворот является симметрией барабана, а следовательно, и тех уравнений, которые описывают его колебания. Поэтому спектр колебаний барабана содержит данную конкретную частоту «два раза». Может показаться, что это трудно наблюдать экспериментально, но если слегка модифицировать барабан, так, чтобы нарушить его вращательную симметрию — скажем, сделать небольшую вмятину вдоль одного из краев, — то две данные частоты начнут слегка отличаться друг от друга, и тогда мы сможем заметить наличие двух очень близких частот. Такого не случилось бы, если бы данная частота содержалась в симметричном барабане только один раз.

Вигнер понял, что тот же эффект возникает для симметричных молекул, атомов и атомных ядер. Звуки, издаваемые барабаном, становятся здесь колебаниями молекул, а спектр звуков заменяется на спектр испущенного или поглощенного света. В квантовом мире спектр создается переходами между состояниями с различными энергиями, и атом излучает фотоны, энергия которых (а потому, как учит нас Планк, и частота) соответствует разнице этих энергий. А спектр можно детектировать, используя спектроскоп. И опять же, некоторые из частот — наблюдаемые в виде спектральных линий — могут оказаться двойными (или имеющими более высокую кратность) в силу симметрии, которой обладают молекула, атом или ядро.

Как детектировать это кратности? В отличие от барабана в молекуле нельзя сделать вмятину. Но можно поместить молекулу в магнитное поле. Оно также разрушает исходную симметрию и приводит к расщеплению спектральных линий. Далее можно использовать теорию групп — точнее, теорию представлений групп — для вычисления частот и того, как они расщепляются.

Теория представлений — одна из самых прекрасных и мощных математических теорий, но она также предъявляет высокие технические требования и содержит множество скрытых ловушек. Вигнер превратил ее в высокое искусство. Другие пытались следовать за ним по пятам.

В 1930 году американский Институт высших исследований в Принстоне предложил Вигнеру работу по совместительству, и он начал курсировать между Принстоном и Берлином. В 1933 году нацисты провели закон, запрещавший евреям работать в университетах, так что Вигнер перебрался в Соединенные Штаты на постоянное жительство — собственно в Принстон, где он поменял свое имя на англизированный вариант — Юджин Пол. Его сестра Маргит приехала к нему в Принстон и познакомилась с Дираком, находившимся там с визитом. В 1937 году, к изумлению многих, они поженились.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Иэн Стюарт читать все книги автора по порядку

Иэн Стюарт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Истина и красота. Всемирная история симметрии. отзывы


Отзывы читателей о книге Истина и красота. Всемирная история симметрии., автор: Иэн Стюарт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x