Алексей Лосев - Хаос и структура

Тут можно читать онлайн Алексей Лосев - Хаос и структура - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 1993. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Хаос и структура
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    1993
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4.63/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Алексей Лосев - Хаос и структура краткое содержание

Хаос и структура - описание и краткое содержание, автор Алексей Лосев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число.

"Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Хаос и структура - читать онлайн бесплатно полную версию (весь текст целиком)

Хаос и структура - читать книгу онлайн бесплатно, автор Алексей Лосев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

у = х 2 + 1

и пусть начальное значение x: будет 3. Тогда начальное значение у=3 2+1 = 10. Возьмем теперь какое–нибудь новое значение x, напр. 4, тогда y =4 2+1 = 17. В первом случае приращение будет

Δ.γ = 4 — 3 = 1,

во втором случае приращение будет

∆у— 17— 10 = 7.

Следовательно, картинка 65= картинка 66=7.

Будем теперь постепенно уменьшать Δx, придавая ему значения 0,9; 0,8; 0,7 и т. д. Соответственно будет меняться χ и также у, а стало быть, и картинка 67. Мы действительно видим, что картинка 68принимает все меньшие и меньшие значения: 7; 6,9; 6,8; 6,7 и т. д. Спрашивается: до каких же пор будет это отношение уменьшаться? ∆х стремится к нулю. К чему же стремится картинка 69?

Чтобы ответить на этот вопрос, представим вышеприведенное выражение — при помощи данной формулы у=χ 2+1. Именно, взявши приращенную функцию, получаем:

у+∆у=(х+∆х) 2+1 = χ 2+ 2χΔχ+(Δχ) 2+1,

откуда

∆у = х 2+ 2х∆х + (∆х) 2+1—(х 2+1) =

=χ 2+2χΔχ+(Δχ) 2+1 — χ 2 —1 = 2х ∆х+(∆х) 2.

Следовательно,

Хаос и структура - изображение 70

Итак, чтобы судить о том, к чему стремится картинка 71, достаточно полученное выражение 2х+∆х взять в пределе, т. е. в условии стремления ∆х к нулю. Очевидно, если Ах стремится к нулю, то картинка 72стремится к 2х, так как ∆х, как стремящееся к нулю, стремится просто отпасть. Значит, если начальное значение аргумента χ у нас было 3, то предел отношения картинка 73будет равен, очевидно, 2–3 = 6.

И действительно, просматривая в нашей табличке значения картинка 74, мы видим, что оно постепенно уменьшается, но не становится меньше 6. Если бы мы взяли, напр., ∆х = 0,001, то, как показывает вычисление, картинка 75оказалось бы равным 6,001. Легко проверить это, подставляя все меньшие и меньшие ∆х и получая отсюда все меньшие и меньшие картинка 76, но не становящиеся меньше 6. 6—это предел, Δχ к которому стремится картинка 77если брать функцию у=х 2+1 при начальном значении х=3.

На этом простейшем примере отчетливо видно, какую форму приобретает взаимоотношение χ и у, когда оно начинает действовать не само по себе, но в своем инобытии, в своем становлении, когда они сплошно и неизменно растут или вообще меняются.

Предел этого отношения картинка 78, когда ∆х стремится к нулю, и есть производная, т. е. функция, «произведенная» от у, которую называют первообразной функцией. Следовательно, производная данной функции есть предел отношения приращения этой функции к приращению аргумента, когда это приращение аргумента стремится к нулю как к своему пределу.

Не будем забиваться в абстрактные дебри, как это любят делать математики, давая это понятие в дифференциальном и интегральном исчислении. Также недостаточны для понимания производной и те геометрические и механические привнесения и толкования, которыми математики уснащают свои руководства, думая на них конкретизировать это отвлеченное понятие. Надо, однако, еще до этих применений и толкований научиться понимать эту замечательную категорию, понимать всю ее жизненную и, следовательно, философскую конкретность.

Что такое производная? Для понимания этой основной категории математического анализа надо с максимальной отчетливостью представить себе разницу между бытием и инобытием или, точнее, между бытием и становлением. Если эта разница усвоена нами с достаточной отчетливостью, тогда необходимо достигнуть четкости еще в представлении того, как совершается стремление к пределу. Если эти две вещи усвоены, то логический состав производной будет ясен сам собой.

Что такое становление? Его удобно можно обрисовать путем противопоставления голому бытию (или голой идее [228] В рукописи: идеи. ), по сравнению с чем оно действительно есть резкая противоположность. Бытие есть прежде всего нечто оформленное и устойчивое; становление бесформенно стремится вперед. Бытие — царство раздельности, координированности; становление же есть алогический процесс, в котором все отдельные моменты сливаются в одну неразличимую непрерывность. Арифметика оперирует с числами вне всякой их процессуальности. Для нее они — вечные, незыблемые идеи, предстоящие в виде некоей картины, и считающий только выбирает из этой картины то одни числа, то другие. Алгебра и элементарная геометрия, не оперируя с арифметическими числами, все же, вполне на манер арифметики, оперируют со своими величинами опять–таки чисто статически. И только в анализе дана чистая стихия становления, чистое алогическое становление, в котором тонет всякая раздельность, затухает всякое оформление и совершается уход в бесконечную даль, к неохватным горизонтам.

Идеи, числа, вещи, взятые как неподвижные, статические, вечные структуры, предстоят как определенным образом связанные между собой, предстоят в некоем конкретном взаимоотношении. Будучи же погружены в стихию становления, они в корне меняют свое взаимоотношение; оно становится неузнаваемым, хотя мы и должны уметь выводить это их алогически–становя–щееся взаимоотношение из их логически–неподвижного взаимоотношения. Вещи, идеи, числа—все, что мыслится и существует, — одним образом взаимосоотносится, когда берется в чистом и непосредственном виде, и совершенно другим способом взаимосоотносится, когда уходит в алогическое становление и растворяется в нем. Итак, это первое и самое главное в производной: производная есть взаимоотношение величин, перешедших в алогическое становление.

Второе, очень важное обстоятельство заключается в том, что производная содержит в своем логическом составе момент предела. Что такое предел, об этом уже говорилось выше. Однако ни на минуту нельзя упускать из виду всего своеобразия этой богатой категории — предела и надо уметь учитывать его в общем логическом составе производной. Схематически эту ситуацию можно представить так.

Аргумент х, погрузившись в становление, меняется, движется — в бесконечность.

Зависящая от него функция у, погрузившись в становление, тоже все время меняется, движется—до бесконечности.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Алексей Лосев читать все книги автора по порядку

Алексей Лосев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Хаос и структура отзывы


Отзывы читателей о книге Хаос и структура, автор: Алексей Лосев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x