Яков Перельман - Математика для любознательных

Тут можно читать онлайн Яков Перельман - Математика для любознательных - бесплатно ознакомительный отрывок. Жанр: Математика, издательство РИМИС, год 2008. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Яков Перельман - Математика для любознательных краткое содержание

Математика для любознательных - описание и краткое содержание, автор Яков Перельман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний.

Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.

Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.

Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Математика для любознательных - читать онлайн бесплатно ознакомительный отрывок

Математика для любознательных - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Яков Перельман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Точно так же выполняются и другие действия. Для упражнения приводим далее ряд примеров, число которых читатель, при желании, может увеличить самостоятельно:

Задача № 16 Задача № 17 Задача № 18
Задача 19 Задача 20 Задачи 21 и 22 Ответы При выполнении этих - фото 94
Задача № 19 Задача № 20 Задачи № 21 и № 22
Ответы При выполнении этих действий мы сначала мысленно изображаем написанные - фото 95

Ответы:

При выполнении этих действий мы сначала мысленно изображаем написанные числа в - фото 96

При выполнении этих действий мы сначала мысленно изображаем написанные числа в привычной нам десятичной системе, а получив результат, снова изображаем его в требуемой недесятичной системе. Но можно поступать и иначе: составить «таблицу сложения» и «таблицу умножения» в тех же системах, в которых даны нам числа, и пользоваться ими непосредственно. Например, таблица сложения в пятиричной системе такова:

С помощью этой таблички мы могли бы сложить числа 4203 и 2132 написанные в - фото 97

С помощью этой таблички мы могли бы сложить числа «4203» и «2132», написанные в пятиричной системе, гораздо менее напрягая внимание, чем при способе, примененном раньше.

Упрощается, как легко понять, также выполнение вычитания.

Задача № 23

Составим и таблицу умножения («Пифагорову») для пятиричной системы.

Решение
Имея эту табличку перед глазами вы опятьтаки можете облегчить себе труд - фото 98

Имея эту табличку перед глазами, вы опять-таки можете облегчить себе труд умножения (и деления) чисел в пятиричной системе, - как легко убедиться, применив ее к приведенным выше примерам. Например, при умножении

рассуждаем так трижды три 14 из таблицы 4 пишем 1 в уме Один на 3 - фото 99

рассуждаем так: трижды три «14» (из таблицы); 4 пишем, 1 - в уме. Один на 3 дает 3, да еще один, - пишем 4. Дважды три = «11»; 1 - пишем, 1 - переносим влево. Получаем в результате «1144».

Чем меньше основание системы, тем меньше и соответствующие таблицы сложения и умножения. Например, для троичной системы обе таблицы таковы:

Таблица сложения для 3-ной системы.

Математика для любознательных - изображение 100

Пифагорова таблица для 3-ной системы:

Математика для любознательных - изображение 101

Их можно было бы сразу же запомнить и пользоваться ими для выполнения действий. Самые маленькие таблицы сложения и вычитания получаются для двоичной системы:

Таблица сложения для двоичной системы:

Математика для любознательных - изображение 102

Таблица умножения для двоичной системы:

Математика для любознательных - изображение 103

При помощи таких-то простых «таблиц» можно выполнять в двоичной системе все четыре действия! Ум - ножения в этой системе, в сущности, как бы и вовсе нет: ведь умножить на единицу значит оставить число без изменения: умножение же на «10», 100», «1000» (т. е. на 2, на 4, на 8) сводится к простому приписыванию справа соответствующего числа нулей. Что же касается сложения, то для выполнения его нужно помнить только одно - что в двоичной системе 1 + 1 = 10. Не правда ли, мы с полным основанием назвали раньше двоичную систему самой простой из всех возможных? Длинота чисел этой своеобразной арифметики искупается простотой выполнения над ними всех арифметических действий. Пусть требуется, например, умножить:

Выполнение действия сводится только к переписыванию данных чисел в надлежащем - фото 104

Выполнение действия сводится только к переписыванию данных чисел в надлежащем расположении: это требует несравненно меньших умственных усилий, чем умножение тех же чисел в десятичной системе (605 x 37 = 22385). Если бы у нас была принята двоичная система, изучение письменного счисления требовало бы наименьшего напряжения мысли (зато - наибольшего количества бумаги и чернил). Однако в устном счете двоичная арифметика по удобству выполнения действий значительно уступает нашей десятичной.

Чет или нечет?

Задача № 24

Не видя числа, трудно, конечно, угадать, какое оно - четное или нечетное. Но не думайте, что вы всегда сможете сказать это, едва увидите задаваемое число. Скажите, например, четное или нечетное число 16?

Если вам известно, что оно написано по десятичной системе, то, без сомнения, можно утверждать, что число это - четное. Но когда оно написано по какой-либо другой системе - можно ли быть уверенным, что оно изображает непременно четное число?

Решение

Оказывается, нет. Если основание, например, семь, то «16» означает 7 + 6 = 13, число нечетное. То же будет и для всякого нечетного основания (потому что всякое нечетное число + 6 = нечетному числу).

* * *

Отсюда вывод, что знакомый нам признак делимости на два (последняя цифра четная) безусловно пригоден только для 10-тичной системы счисления, для других же - не всегда. А именно, он верен только для систем счисления с четным основанием: 6-ричной, 8-ричной и т. п. Каков же признак делимости на 2 для систем с нечетным основанием? Достаточно краткого размышления, чтобы установить его: сумма цифр должна быть четной. Например, число «136» четное во всякой системе счисления, даже и с нечетным основанием: действительно, в последнем случае имеем: нечетные числа [63]+ нечетное число + четное = четному числу.

С такою же осторожностью надо отнестись к задаче: всегда ли число 25 делится на 5? В 7-ричной или в 8-ричной системе число, так изображенное, на 5 не делится (потому что оно равно девятнадцати или двадцати одному). Точно так же общеизвестный признак делимости на 9 (сумма цифр…) правилен только для десятичной системы. Напротив, в пятиричной системе тот же признак применим для делимости на 4, а, например, в семиричной - на 6. Так, число «323» в пятиричной системе делится на 4, потому что 3 + 2 + 3 = 8, а число «51» в семиричной - на 6 (легко убедиться, переведя числа в десятичную систему: получим соответственно 88 и 36). Почему это так, читатель сам сможет сообразить, если вникнет хорошенько в вывод признака делимости на 9 и приложит те же рассуждения, соответственно измененные, например, к семиричной системе для вывода признака делимости на 6.

Труднее доказать чисто арифметическим путем справедливость следующих положений:

Знакомые с начатками алгебры легко найдут основание объясняющее свойство этих - фото 105

Знакомые с начатками алгебры легко найдут основание, объясняющее свойство этих равенств. Остальные читатели могут проверить их рядом проб для разных систем счисления.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Яков Перельман читать все книги автора по порядку

Яков Перельман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика для любознательных отзывы


Отзывы читателей о книге Математика для любознательных, автор: Яков Перельман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x