Яков Перельман - Математика для любознательных

Тут можно читать онлайн Яков Перельман - Математика для любознательных - бесплатно ознакомительный отрывок. Жанр: Математика, издательство РИМИС, год 2008. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Яков Перельман - Математика для любознательных краткое содержание

Математика для любознательных - описание и краткое содержание, автор Яков Перельман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний.

Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.

Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.

Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Математика для любознательных - читать онлайн бесплатно ознакомительный отрывок

Математика для любознательных - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Яков Перельман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Чтобы составить себе представление об огромности миллиарда, подумайте о том, что в книжке, которую вы сейчас читаете, заключается немногим более 200.000 букв. В пяти таких книжках окажется один миллион букв. А миллиард букв будет заключать в себе стопка из 5.000 экземпляров этой книжки - стопка, которая, будучи аккуратно сложена, составила бы столб высотой с Исакиевский собор.

Миллиард секунд часы отобьют более чем в 30 лет (точнее в 31,7лет). А миллиард минут составляет более 19 столетий; человечество всего двадцать четыре года назад [87](29 апреля 1902 года в 10 часов 40 мин.) начало считать второй миллиард минут от первого дня нашего летосчисления.

Биллион и триллион

Ощутить огромность этих числовых исполинов трудно даже человеку, опытному в обращении с миллионами. Великан-миллион - такой же карлик рядом со сверх-великаном биллионом, как единица рядом с миллионом. Об этом взаимоотношении мы обыкновенно забываем и не делаем в своем воображении большой разницы между миллионом, биллионом и триллионом. Мы уподобляемся здесь тем первобытным народам, которые умеют считать только до 2 или до 3, а все числа свыше их одинаково обозначают словом много. «Подобно тому, как ботокудам [88]кажется несущественной разница между двумя и тремя, - говорит известный германский математик проф. Г. Шуберт, - так и многим современным культурным людям представляется несущественной разница между биллионом и триллионом. По крайней мере, они не думают о том, что одно из этих чисел в миллион раз больше другого и что, значит, первое относится ко второму приблизительно так, как расстояние от Берлина до Сан-Франциско относится к ширине улицы».

Волос, увеличенный по толщине в биллион раз, был бы раз в 8 шире земного шара, а муха при таком увеличении была бы в 70 раз толще Солнца!

Взаимоотношение между миллионом, биллионом и триллионом можно с некоторою наглядностью представить следующим образом. В Ленинграде еще недавно было миллион жителей. Вообразите же себе длинный прямой ряд городов, таких как Ленинград, - целый миллион их; в этой цепи столиц, тянущихся на семь миллионов километров (в 20 раз дальше Луны) будет насчитываться биллион жителей… Теперь вообразите, что перед вами не один такой ряд городов, а целый миллион рядов, т. е. квадрат, каждая сторона которого состоит из миллиона Ленинградов и который внутри сплошь уставлен Ленинградами: в этом квадрате будет триллион жителей.

Одним триллионом кирпичей можно было бы, размещая их плотным слоем по твердой поверхности земного шара, покрыть все материки равномерным сплошным пластом высотою с четырехэтажный дом (16 м).

Если бы все видимые в сильнейшие телескопы звезды обоих небесных полушарий, т. е. не менее 500 миллионов звезд - были обитаемы и населены каждая, как наша Земля, то на всех этих звездах, вместе взятых, насчитывался бы только один триллион людей.

Последнюю иллюстрацию мы заимствуем из мира мельчайших частиц, составляющих все тела природы - из мира молекул. Молекула по ширине меньше точки типографского шрифта этой книги примерно в миллион раз. Вообразите же триллион таких молекул [89], нанизанных вплотную на одну нитку. Какой длины была бы эта нить? Ею можно было бы семь раз обмотать земной шар по экватору!

Квадрильон

В старинной (XVIII в.) «Арифметике» Магницкого, о которой мы не раз уже упоминали, приводится таблица названий классов чисел, доведенная до квадрильона, т. е. единицы с 24 нулями [90].

Это было большим шагом вперед по сравнению с более древним числовым инвентарем наших предков. Древняя славянская лестница больших чисел была до XV века гораздо скромнее и достигала только до ста миллионов. Вот эта старинная нумерация:

Магницкий широко раздвинул древние пределы больших чисел в своей табличке Но - фото 196

Магницкий широко раздвинул древние пределы больших чисел в своей табличке. Но он считал практически бесполезным доводить систему наименований числовых великанов чересчур далеко. Вслед за его таблицей он помещает такие стихи:

Числ есть бесконечно,

умом нам недотечно,

И никто знает конца,

кроме всех бога творца.

Несть бо нам определьно

тем же есть и безцельно

Множайших чисел искати

и больше сей писати

Превосходной таблицы

умов наших границы

И аще кому треба

счисляти что внутрь неба

Довлеет числа сего

к вещем всем мира сего.

Наш старинный математик хотел сказать этими стихами, что так как ум человеческий не может обнять бесконечного ряда чисел, то бесцельно составлять числа больше тех, которые представлены в его таблице, «умов наших границе». Заключающиеся в ней числа (от 1-цы до квадрильонов включительно) достаточны для исчисления всех вещей видимого мира, - достаточны для тех, «кому треба счисляти что внутрь неба».

Любопытно отметить, что Магницкий оказался в данном случае почти прозорливцем. По крайней мере, до самого последнего времени наука не ощущала еще нужды в числах высшего наименования, чем квадрильоны. Расстояния самых отдаленных звездных скоплений, по новейшим оценкам астрономов исчисляемые в сотни тысяч «цветовых лет» [91], в переводе на километры выражаются триллионами. Это - доступные сильнейшим телескопам видимые границы вселенной. Расстояние всех других звезд, расположенных «внутри неба», выражаются, конечно, меньшими числами. Общее чис - л о звезд исчисляется «всего лишь» сотнями миллионов. Древность старейших из них не превышает, по самой щедрой оценке, биллиона лет. Массы звезд исчисляются тысячами квадрильонов тонн.

Обращаясь в другую сторону, к миру весьма малых величин, мы и здесь не ощущаем пока надобности пользоваться числами свыше квадрильонов. Число молекул в кубическом сантиметре газа - одно из самых больших множеств, реально исчисленных, - выражается десятками триллионов. Число колебаний в секунду для самых быстроколеблющихся волн лучистой энергии (лучей Гесса) не превышает 40 триллионов. Если бы мы вздумали подсчитать, сколько капель в океане (считая даже объем капли 1 куб. миллиметр, - что весьма немного), нам и тогда не пришлось бы обратиться к наименованиям выше квадрильона, потому что число это исчисляется только тысячами квадрильонов.

И лишь при желании выразить числом, сколько граммов вещества заключает вся наша солнечная система, понадобились бы наименования выше квадрильона, потому что в числе этом 34 цифры (2 и 33 нуля): это - две тысячи квинтильонов.

Если вам интересно, каковы наименования сверх-исполинов, следующих за квадрильоном, вы найдете их в приводимой здесь табличке:

Далее наименований не имеется Но и эти в сущности почти не употребляются да - фото 197

Далее наименований не имеется. Но и эти, в сущности, почти не употребляются, да и мало кому известны. Как велики выражаемые ими числа, видно хотя бы из того, что число граммов вещества во вселенной (по современным воззрениям) «всего» 10 нональонов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Яков Перельман читать все книги автора по порядку

Яков Перельман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика для любознательных отзывы


Отзывы читателей о книге Математика для любознательных, автор: Яков Перельман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x