Яков Перельман - Математика для любознательных
- Название:Математика для любознательных
- Автор:
- Жанр:
- Издательство:РИМИС
- Год:2008
- ISBN:978-5-9650-0042-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Яков Перельман - Математика для любознательных краткое содержание
Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний.
Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.
Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.
Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.
Математика для любознательных - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
42
Их было много тогда в Ленинграде. Позднее я узнал, что китайский иероглиф для 10 имеет как раз указанную форму креста (китайцы не употребляют наших «арабских» цифр).
43
Это показывает, что описываемые знаки были в широком употреблении среди населения.
44
Торговцы, вразнос продающие галантерейные товары, книжки, лубочные картинки. - Прим. изд .
45
Расположение чисел здесь такое, какое принято теперь в Англии и Америке (а в прежнее время употреблялось и в русских учебных книгах): частное и делитель пишутся по обе стороны делимого.
46
Английское название игры «div-al-et» - сокращение от «division by letters», т. е. деление с помощью букв.
47
Желающие применить эту систему на практике при устройстве библиотеки найдут все необходимые сведения в книге Международного Библиографического Института «Десятичная классификация». Перевод под редакцией проф. А. М. Ловягина (Ленинград, 1923).
48
Семикосточковые счеты в Китае чрезвычайно распространены; они изготовляются всевозможных размеров, до самых миниатюрных (у меня имеется привезенный из Китая экземпляр в 17 мм длины и 8 мм ширины).
49
Этот прием полезен и для устного деления на 9.
50
Перечисленные приемы умножения указаны в старинной «Арифметике» Николая Тартальи. Наш современный способ умножения описывается там под названием «шахматного».
51
Венеция и некоторые другие государства Италии в XIV-XVI столетиях вели обширную морскую торговлю, и потому в этих странах приемы счета были, ради коммерческих надобностей, разработаны раньше, чем в других. Лучшие труды по арифметике появились в Венеции. Многие итальянские термины коммерческой арифметики сохранились еще в настоящее время.
52
Старинный русский учебник математики, охватывающий все ее отделы. Это - одна из тех двух книг, которые Ломоносов назвал «вратами своей учености». Подробное заглавие ее таково: «Арифметика, сиречь наука числительная, повелением царя Петра Алексеевича в великом граде Москве типографским тиснением ради обучения мудролюбивых российских отроков и всякого чина и возраста людей на свет произведена в лето от рождества бога слова 1703».
53
Последние две девятки приписаны к делителю в процессе деления.
54
Выясняется попутно при выводе признака делимости на 9 (читатель найдет вывод в моей «Хрестоматии-задачнике по начальной математике»).
55
См. составленные мною «Таблицы и правила для вычислений». Изд. Промбюро. Ленинград, 1926 г.
56
Папирус был разыскан английским египтологом Генри Риндом; он оказался заключенным в металлический футляр. В развернутом виде имеет 20 метров длины, при 30 сантиметрах ширины. Хранится в Британском Музее, в Лондоне.
57
Звание «писец» принадлежало третьему классу египетских жрецов; в ведении их находилось «все относившееся к строительной части храма и к его земельной собственности». Математические, астрономические и географические знания составляли их главную специальность (В. Бобынин).
58
Составитель был бы весьма признателен за письменные сообщения (по адресу, указанному в предисловии).
59
«Природа и Люди» (потом она была перепечатана мною в сборнике Е. И. Игнатьева «В царстве смекалки»).
60
Ответ 1146.
61
Ответ НН, где буквою Н обозначена «цифра 13».
62
Зато, как увидим далее, для такой системы до крайности упрощаются таблица сложения и таблица умножения.
63
Нечетное число, умноженное на себя (т. е. на нечетное) всегда дает нечетное число (например, 7Ч7:=49, 11Ч11=121 и т. п.).
64
Древние (последователи Пифагора) считали 9 символом постоянства, так как все числа, кратные 9, имеют сумму цифр, кратную 9-ти.
65
Как распространено это суеверие даже и в нашу эпоху, видно из того, что при устройстве электрического трамвая в Ленинграде (тогда Петербурге) первое время не решались вводить маршрута № 13, а пропустив его, сразу перешли к № 14: опасались, что публика побоится ездить в вагонах с таким «роковым» номером. Любопытно то, что в Ленинграде есть немало домов, где 13-й номер квартиры пропущен… В гостиницах также нередко отсутствует комната № 13. Для борьбы с этим ничем не обоснованным числовым суеверием на Западе (в Англии) учреждены даже особые «клубы числа 13».
66
В двоичной системе счисления, как мы уже объясняли (см. стр. 195-196), все умножения именно такого рода. На этом примере мы наглядно убеждаемся в преимуществах двоичной системы.
67
Если множитель кратен 7, то результат равен числу 999999, умноженному на число семерок в множителе; такое умножение легко выполнить в уме. Например, 142857 x 28 = 999999 x 4 = 4000000-4 = 3999996.
68
Русский перевод (вольный) Жуковского. Эпизод, о котором далее идет речь, описан в главе VIII этой повести.
69
Можно пользоваться и простыми карточками с соответствующими надписями.
70
Проходившие алгебру знают, что и число 1 можно рассматривать, как степень 2-х, именно нулевую.
71
Единицу можно рассматривать как нулевую степень (вообще - как нулевую степень каждого числа).
72
Это свойство разности вытекает на «правила остатков», о котором мы упоминали раньше, на стр. 173.
73
Нетрудно ввести поправку и на високосные годы.
74
Указанными далее приемами ускоренного умножения эти операции облегчаются до чрезвычайности, и миллионный результат получается очень быстро. Советую читателю попробовать произвести то же вычисление и обыкновенным путем, чтобы на деле убедиться, какая экономия во времени получается при пользовании указанной формулой и нижеприведенными приемами.
75
Впрочем, в последние годы способ этот снова стал входить в употребление, - главным образом, благодаря деятельной пропаганде замечательного германского счетчика, инженера Ф. Ферроля. В Америке выдающиеся педагоги высказывались за введение его в школе взамен нынешнего, довольно медленного способа.
76
Старый стиль - летоисчисление по юлианскому календарю, новый стиль - по григорианскому календарю. - Прим. изд .
77
Деля 1904 на 28, мы уже учли, что 1904-й год - високосный; беря же в феврале 29 дней, мы учитываем это обстоятельство второй раз. Поэтому надо лишний день откинуть.
78
На стр. 268приложен чертеж такого циферблата.
Читать дальшеИнтервал:
Закладка: