Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней

Тут можно читать онлайн Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент «Центрполиграф»a8b439f2-3900-11e0-8c7e-ec5afce481d9, год 2014. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Магия чисел. Математическая мысль от Пифагора до наших дней
  • Автор:
  • Жанр:
  • Издательство:
    Литагент «Центрполиграф»a8b439f2-3900-11e0-8c7e-ec5afce481d9
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9524-5138-4
  • Рейтинг:
    3.5/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней краткое содержание

Магия чисел. Математическая мысль от Пифагора до наших дней - описание и краткое содержание, автор Эрик Белл, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Американский математик, исследователь в области теории чисел Эрик Т. Белл посвятил свою книгу истории происхождения математической мысли и разработки численной теории с момента ее зарождения в древности до современной эпохи. Обоснованно и убедительно автор демонстрирует влияние, которое оказала «магия чисел» на развитие религии, философии, науки и математики. Э.Т. Белл рассматривает процесс превращения числа из инструмента счета в объект культуры, сформировавшийся в VI веке до н. э. в школе древнегреческого философа, мистика, физика-экспериментатора и математика Пифагора – главного героя его исследования. Основополагающим моментом учения великого ученого древности стала доктрина о том, что «все сущее есть число». Доктор Белл изучил развитие этой доктрины: ее упадок в XVII веке и блистательное возрождение в современной физике. Автор также представил и проанализировал труды таких гигантов математики, как Галилей, Джордано Бруно, Ньютон.

Магия чисел. Математическая мысль от Пифагора до наших дней - читать онлайн бесплатно ознакомительный отрывок

Магия чисел. Математическая мысль от Пифагора до наших дней - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Эрик Белл
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Даже если эпистемологическому методу в науке не суждено найти ничего нового, это, по крайней мере, покажет, что кое-что из старого более очевидно, нежели предполагалось. Любое сокращение лишних гипотез можно считать удачей. Но похоже, слишком оптимистично ожидать, как больше чем полдюжины ведущих ученых за каких-то тысячу лет достаточно усовершенствуют самосозерцательную технику, чтобы делать новые научные открытия. В конце концов всеобщая теория относительности (без сопровождающего математического аппарата) могла бы быть высказана еще Пифагором. И все же Платон просмотрел ее, и Аристотель, и Ньютон, и Максвелл, и сотни других, кто мог, но не сумел.

Окончательная цель современных пифагорейцев по существу та же, какую преследовали их древние предшественники. Они стремятся обнаружить систему вполне математических утверждений, подводящих итог всего узнаваемого о физической вселенной, и способную к предсказанию всех физических событий. В данном случае термин «физический» используется, чтобы исключить все живое. Чем меньшее количество утверждений потребуется, тем лучше; одно – это идеал. Весь «внешний мир» будет тогда навсегда уменьшен до одной великой математической формулы. Это объединяет мечту Пифагора и амбиции Лапласа. И ничего больше не надо будет ни открывать, ни выдумывать. Но имеется различие, которое Кант оценил бы: комплексная формула должна быть найденной в самом разуме. Все законы неодушевленного мира будут тогда очевидны интуитивно без обращения к чувствам. Не зря же жил Платон.

Предвкушение, каким может быть результат, появилось у Эддингтона в 1936 году, в его впечатляющей и наводящей на размышления «Теории относительности протонов и электронов». Поскольку доказательство (329 страниц) техническое, мы можем представлять только несколько заключений, выбрав интересные с точки зрения формирования независимого мнения о самой работе. Начиная с 1936 года появились существенные модификации теории, но ни одной, имеющей целью уничтожить характерные особенности. Новые открытия легко добавлять там, где необходимо квалифицированное дополнение.

Эддингтон обращает внимание, что имеются некоторые признанные «мировые константы» для описания природы, семь из которых обычно считаются фундаментальными для физики и космологии. Три: масса протона, масса электрона и заряд электрона – пожертвованы атомной физикой; одна – постоянная Планка – квантовой теорией; и еще три: скорость света, «гравитационная постоянная» и «космическая постоянная» – релятивистской физикой и космологией. Математические выражения этих семи констант содержат буквы, обозначающие произвольные единицы «длины», «времени» и «массы». Элементарной алгеброй эти произвольные три легко исключены. Семь констант, таким образом, производят простые, и только «четыре» из чистых чисел, напоминающих нам о Пифагоре и Эмпедокле. Одно из этих четырех – большое число N, которое декларировано как «число частиц во вселенной». Другое, очень известное, является главным числом 137, основа «тонкоструктурной постоянной» спектроскопии. Мы возвратимся к 137 через мгновение. Еще одно число – отношение массы протона к массе электрона, это – рациональное число. Протон и электрон – элементарные частицы, из которых, как полагают, состоят атомы. Оставшееся чистое число, предоставленное фундаментальными константами природы, столь же интересно, но уже скорее технически.

Огромное число N частиц во вселенной, конечно, еще не было проверено наблюдением. Другие три чистых числа довольно малы, и все известны. Таким образом, проверка наблюдением для трех из четырех мировых констант выполнима. Проверка – это хорошо, даже лучше чем хорошо. Эддингтон отмечает, что «все четыре константы получены вполне теоретическим вычислением». Далее он замечает, что число (четыре) из измерений пространство-время (строение физической вселенной, согласно теории относительности) может рассматриваться как пятая фундаментальная мировая константа. Даже это число (утверждает он) найдено, чтобы быть однозначно детерминировано, исходя из эпистемологического принципа, что мы можем только наблюдать отношения между двумя объектами, – принцип, который почти каждый из нас мог бы признать потребностью рациональной мысли или значимого языка.

Указав на замечательное соответствие между собственными эпистемологическими выводами и результатами, предварительно известными из наблюдения и опыта, Эддингтон отмечает, что, «если бы все пошло иначе, это привело бы к замешательству, но теория не опирается на проводимые наблюдения». Далее, если теория права, «станет возможно судить, правильны ли математическая обработка и решения, не ожидая найти ответ в книге природы. Моя задача состоит в том, чтобы показать, что для вычисления точного значения констант наши теоретические ресурсы достаточны и наши методы вполне результативны, и наблюдение тогда станет лишь разновидностью формальной проверки, которую мы применяем иногда к теоремам в геометрии».

Из отдельных деталей эпистемологической теории судьба 137, возможно, наиболее интересна. Эта тонкоструктурная константа была предметом многих экспериментальных определений (как прямых, так косвенных) прежде, чем Эддингтон взялся получить ее из эпистемологических рассуждений. Он получил результат 137 в качестве числового значения этой константы, но знаменательно разнящийся с результатами, полученными экспериментально. Несоответствие между теорией и наблюдением было слишком малым, чтобы счесть это более чем случайным совпадением. Кто-то из компетентных экспериментаторов повторил свою работу с дотошной тщательностью, кто-то изобрел и применил новые методы проверки 137. Пока теория не предсказала, что константа должна быть целым числом, и заявила 137 как целое число, никто и не подозревал, что константа могла быть целым числом. Пифагор подсказал бы экспериментаторам, что их результаты ограничатся целым числом, когда они научатся точным измерениям. Так и случилось. К 1942 году было общепризнано, что число 137 верно.

Выстоит ли эпистемологическая теория в той или иной форме, останется ли она неизменной, или претерпит изменения, или сдаст окончательно свои позиции, число 137 всегда будет делать ей честь. Теория освобождается от своих научных обязательств, когда она провоцирует новую экспериментальную работу большой научной ценности по любому признанному стандарту. То, что предсказание было выверено, могло оказаться лишь удачным совпадением. Но раз уж тому суждено случиться, это не умаляет положительное достижение. И не в первый раз в истории науки, когда ошибка одного человека стоила больше, чем правота другого.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эрик Белл читать все книги автора по порядку

Эрик Белл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Магия чисел. Математическая мысль от Пифагора до наших дней отзывы


Отзывы читателей о книге Магия чисел. Математическая мысль от Пифагора до наших дней, автор: Эрик Белл. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x