Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней

Тут можно читать онлайн Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент «Центрполиграф»a8b439f2-3900-11e0-8c7e-ec5afce481d9, год 2014. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Магия чисел. Математическая мысль от Пифагора до наших дней
  • Автор:
  • Жанр:
  • Издательство:
    Литагент «Центрполиграф»a8b439f2-3900-11e0-8c7e-ec5afce481d9
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9524-5138-4
  • Рейтинг:
    3.5/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней краткое содержание

Магия чисел. Математическая мысль от Пифагора до наших дней - описание и краткое содержание, автор Эрик Белл, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Американский математик, исследователь в области теории чисел Эрик Т. Белл посвятил свою книгу истории происхождения математической мысли и разработки численной теории с момента ее зарождения в древности до современной эпохи. Обоснованно и убедительно автор демонстрирует влияние, которое оказала «магия чисел» на развитие религии, философии, науки и математики. Э.Т. Белл рассматривает процесс превращения числа из инструмента счета в объект культуры, сформировавшийся в VI веке до н. э. в школе древнегреческого философа, мистика, физика-экспериментатора и математика Пифагора – главного героя его исследования. Основополагающим моментом учения великого ученого древности стала доктрина о том, что «все сущее есть число». Доктор Белл изучил развитие этой доктрины: ее упадок в XVII веке и блистательное возрождение в современной физике. Автор также представил и проанализировал труды таких гигантов математики, как Галилей, Джордано Бруно, Ньютон.

Магия чисел. Математическая мысль от Пифагора до наших дней - читать онлайн бесплатно ознакомительный отрывок

Магия чисел. Математическая мысль от Пифагора до наших дней - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Эрик Белл
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Любой разумный человек может видеть в «точке» и «прямой линии» общеизвестные понятия, которые, как ему представляется, он понимает интуитивно. Но каждое из этих интуитивных ощущений должно оставаться на заднем плане. Оно не должно навязываться геометрии. Подобный запрет не имеет целью встать на пути поиска мысли при формулировании теорем. Начиная с двенадцатилетнего школьника и заканчивая семидесятилетним ученым в тиши кабинета, всякий, посвятивший себя геометрии, нуждается в интуиции и пользуется ею. Только после того, как интуиция и воображение полностью исчерпают себя, они могут быть отброшены, уступив место логике.

В теоретической астрономии и физических науках процедура точно такая же. Земля, которую мы населяем и знаем благодаря нашим ощущениям, – не идеальная планета, которой она представляется в механике небесных тел. Она покрыта глубокими океанами и испещрена горными системами. Эта планета, которую учитывают в расчетах возмущений Солнечной системы, является как безразмерной частицей, наделенной массой и положением, так и гладкой без особых примет сферой, слегка покачивающейся относительно своих полюсов. И хотя солнце и планеты Солнечной системы идеализируются подобным образом, орбиты комет рассчитываются с такой точностью, что возврат перигелия кометы Галлея в 1910 году после ее отсутствия в течение примерно 75 лет был предсказан с погрешностью только в 3,03 дня – около 1 из 9125.

В настоящее время все сказанное настолько хорошо знакомо, что нас можно извинить, если мы посчитаем это явно граничащим с трюизмом. Но всякий, кому и дальнейшее покажется очевидным, является либо гением, либо просто равнодушным человеком. Просто чудесно, что идеальный мир математиков или ученых-теоретиков должен время от времени предсказывать существование непредвиденных событий «реального» мира.

Приведу известный пример такого предсказания. Положение планеты Нептун за пределами возможностей человеческого глаза было предсказано (в 1846 году) путем математических расчетов на основе закона всемирного тяготения Ньютона, и телескоп обнаружил планету очень близко к расчетному месту. Или более свежий пример (1927). Современная физика и математика на основе квантовой теории предположила существование двух видов молекул водорода, ортоводорода и параводорода, о которых химики даже не догадывались. Более того, их соотношение ( 3/ 4и 1/ 4) в «водороде» совпало с расчетными. Как можно объяснить подобные предсказания?

Объяснений было представлено много, даже слишком много, чтобы предположить, что хоть одно окажется убедительным. Только самое позднее из них (1930) следует рассмотреть в данной работе, как наиболее уместное относительно магии чисел, благодаря древней истории которой и появилось на свет. Человеческий разум должен предполагать результат любого научного эксперимента до того, как опыт будет произведен, потому что можно осознавать и рассуждать последовательно только при одном условии, математическом подходе, и, более того, математические истины бессмертны. Заявлено слишком жестко, но не слишком пристрастно, как в большинстве революционных научных кредо ученых последних трех столетий. Нечто подобное уже произносилось, к этому возвращались много раз и в самых разных формах, с VI века до н. э. и вплоть до наших дней.

Некоторые математики чувствуют необходимость подчинения неизбежности. Возникает ощущение, будто их открытия и находки ожидали их в неизвестном, но вполне узнаваемом будущем. Рационалист сказал бы, что математик проектирует себя в иллюзорное время своего собственного изобретения. Будущее, в которое, как ему представляется, он проникает, на самом деле есть его собственные настоящие абстракции и доказательства – плоти и духа математики. Постоянство и универсальность математики основываются на ее абстрактности, очевидной необходимости или «обреченности» как сопутствующей строгости формальной логики.

Всеми, кто верит, что математика и логика есть плоды человеческого сознания, и необходимость и универсальность воспринимаются лишь как преходящие признаки. Сторонники теории о том, что числа были скорее найдены, чем изобретены, обнаруживают в математике бесспорное доказательство существования высшего и вечного разума, наполняющего вселенную. Первые чтут в математике гибкость и способность меняться, последние видят в математике откровение постоянства в бесконечности пространства, все несовершенство которого вносится лишь неадекватностью человеческого восприятия. По мере продвижения в направлении более ясного осознания бесконечности несовершенство пропадет, и математика засияет ярче, как безупречное олицетворение вечной истины.

Первые признаки того, что в VI веке до н. э. появление подобного учения было вполне разумно и возможно, видны на примере полудюжины простых утверждений о прямых линиях и окружностях; и, как гласят предания, Фалес некоторые из них даже доказал. Если прямая линия проходит через центр окружности, она делит окружность на две равные во всех отношениях части.

Или, например, если две стороны треугольника равны, то углы, противоположные равным сторонам, тоже равны. Эти два утверждения подтверждаются при начертании соответствующих фигур, и точно так же очевидна правота другого утверждения: если две прямые линии пересекаются, противоположные углы в точке пересечения попарно равны. Просто внимательно взглянув на чертеж, видим «истину» данного утверждения в геометрии. А если еще немного поразмышляем, то «увидим», что данные выводы не проистекают из каких-либо чисел, которые можно было бы «притянуть» к этому, но, по-видимому, сохраняют справедливость по отношению к любой окружности, любому равнобедренному треугольнику, любой паре пересекающихся прямых линий, которые только в состоянии представить человек. И это означает, что в своей области эти «утверждения» универсальны. Почему? Кто-то скажет, что это вопрос терминологии. Другие найдут утешение в утверждении, что «универсальность» абстрактных линий – это проявление высшего разума.

Четвертое утверждение практически равнозначно: если четырехугольник вписан в окружность, каждая из его диагоналей проходит через центр окружности. Этот вывод, надо признать, не производит сильного впечатления. Но, поданный в иной равнозначной формулировке, он становится, по признанию многих, самой красивой теоремой элементарной геометрии: угол, вписанный в полуокружность, есть прямой угол. Инвариантность, неизменность угла, вне зависимости от места вершины угла на полуокружности, восхищала Данте.

Каждое из приведенных четырех утверждений становится интуитивно очевидным, что явствует в процессе исследования простой фигуры, вроде тех, что ребенок играючи способен нарисовать на поверхности. Все четыре могли быть известны задолго до VI века до н. э., когда впервые в истории их внимательно рассмотрели, но не глазами безучастного ребенка, а пристальным взглядом мудрого человека.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эрик Белл читать все книги автора по порядку

Эрик Белл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Магия чисел. Математическая мысль от Пифагора до наших дней отзывы


Отзывы читателей о книге Магия чисел. Математическая мысль от Пифагора до наших дней, автор: Эрик Белл. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x