Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней

Тут можно читать онлайн Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент «Центрполиграф»a8b439f2-3900-11e0-8c7e-ec5afce481d9, год 2014. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Магия чисел. Математическая мысль от Пифагора до наших дней
  • Автор:
  • Жанр:
  • Издательство:
    Литагент «Центрполиграф»a8b439f2-3900-11e0-8c7e-ec5afce481d9
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9524-5138-4
  • Рейтинг:
    3.5/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней краткое содержание

Магия чисел. Математическая мысль от Пифагора до наших дней - описание и краткое содержание, автор Эрик Белл, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Американский математик, исследователь в области теории чисел Эрик Т. Белл посвятил свою книгу истории происхождения математической мысли и разработки численной теории с момента ее зарождения в древности до современной эпохи. Обоснованно и убедительно автор демонстрирует влияние, которое оказала «магия чисел» на развитие религии, философии, науки и математики. Э.Т. Белл рассматривает процесс превращения числа из инструмента счета в объект культуры, сформировавшийся в VI веке до н. э. в школе древнегреческого философа, мистика, физика-экспериментатора и математика Пифагора – главного героя его исследования. Основополагающим моментом учения великого ученого древности стала доктрина о том, что «все сущее есть число». Доктор Белл изучил развитие этой доктрины: ее упадок в XVII веке и блистательное возрождение в современной физике. Автор также представил и проанализировал труды таких гигантов математики, как Галилей, Джордано Бруно, Ньютон.

Магия чисел. Математическая мысль от Пифагора до наших дней - читать онлайн бесплатно ознакомительный отрывок

Магия чисел. Математическая мысль от Пифагора до наших дней - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Эрик Белл
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Кажется, ныне общепризнано, что религия полностью в рамках разумного не так уж желанна, как представлял себе лишенный эмоций Кант. Он храбро сражался за свою бескровную веру, а его противники, включая болезненно набожного короля, были слишком многочисленны и слишком хорошо организованы, чтобы разбить даже самого рассудительного ученого. Почти против воли, вынужденно начав отражать более грозную полемику, Кант не мог позволить себе, чтобы его заставили замолчать. Смерть короля через пять лет после того, как Кант поклялся себе не возбуждать враждебности большей, чем необходимо для защиты своей интеллектуальной целостности, развязала язык философу. Он мог бы сказать многое. Но пять лет угроз и репрессий повлияли на Канта, и война потеряла смысл. То, что он узнал об ортодоксальном мышлении, царившем в Пруссии того времени, видимо, лишило его желания предпринимать дальнейшие попытки ее просвещения. Он продолжил свою работу, для которой был создан, адресуя критику в дальнейшем нескольким достаточно спокойным ученым, чтобы распутать лабиринты своего мышления.

Попытки Канта решить раз и навсегда проблему статуса математической истины – это единственная представляющая для нас практический интерес деталь его системы. Но следует при этом помнить, что математика для Канта была почти так же важна, как и для Платона. Поэтому если он ошибся в своей оценке математики, то, следовательно, возможно, что он был внутренне не прав и в остальных деталях своей обширной системы. Точка зрения Канта на природу математики изложена в «Элементах трансцендентализма», в начале второй части «Критики» и наиболее ясно в «Трансцендентальной эстетике». Видимо, у него были определенные сомнения, сумел ли он изложить материал ясно и понятливо, как того хотелось бы ему самому и его «пытливому читателю», которому он предназначал свои выводы. Чтобы донести свое осознание, он придумал пояснительное продолжение, рассчитанное, в частности, на преподавателей, которые окажутся достаточно квалифицированными, чтобы предложить «Критику» в качестве учебного пособия. Продолжение названо весьма скромно: «Введение в изучение каждой будущей системы метафизики, которая может претендовать на место науки».

В «Век разума и просвещения» были гиганты. Среди «Главных вопросов», затронутых и, по общему мнению, решенных в «Введении», приведем здесь два: «Возможна ли вообще метафизика?» и «Возможна ли чистая математика?». Ответ Канта на первый вопрос, как и следовало ожидать: «Да». Экстремальный позитивист-логик XX века утверждает, что правильный ответ: «Нет».

Вопрос Канта о чистой математике не потерял актуальности. Полностью неправильное понимание природы математики достаточно наглядно отражено в его ложном предположении, которое он высоко ценил, что геометрия состоит из «синтетических суждений априори». Достаточно описать, что он имел в виду, и указать, почему математики знают (а это вопрос знания, а не мнения), что высказывание ошибочно. Предположительно, Кант был введен в заблуждение различием (не безусловно признанным на момент написания им «Критики», но теперь общеизвестным фактом) между геометрией как абстрактной дедуктивной системой и геометрией как частично эмпирической наукой, используемой для изучения физической вселенной. Сходное заблуждение Канта касалось арифметики и, что правда, то правда, всех других направлений математики. Как Эйнштейн сформулировал различие между прикладной и чистой математикой: «В той части, где теоремы математики касаются реальности, они не верны, в той части, где они верны, они не о реальности».

Мы не хотим дискредитировать Канта за то, что он просмотрел фундаментальное отличие. За исключением похороненной геометрии Саккери, о существовании которой Кант просто не знал, хотя ее отдали в набор за сорок восемь лет до того, как опубликовали «Критику», математики едва ли к тому времени предоставили философам достаточно материалов, на базе которых можно было бы сформировать разумное мнение. И мы видели, как сами математики медленно приходили к пониманию важности неевклидовой геометрии Лобачевского, опубликованной четверть века спустя после смерти Канта. Только в конце XIX века профессиональные математики начали серьезно интересоваться сущностью математики, а затем начали понимать то, что их предшественники от Фалеса до Пуанкаре (жившего в 1854–1912 годах) реально совершили.

Было бы справедливо послушать самого Канта, прежде чем переходить к опровержениям. Достаточно и нескольких выдержек. Он начал с объяснения: «Я вспоминаю все доклады, где нет ни слова объяснения восприятию понятия «чистая». Чистая форма всех чувственных интуиций, та форма, в которой просматриваются несколько элементов этого феномена, выстроенных в определенном порядке, априори должна быть найдена в разуме. И эта чистая форма чувственности может быть названа чистой интуицией». После ряда дальнейших толкований определений Кант декларирует: «В ходе данного исследования станет ясно, что существуют две чистые формы чувственной интуиции как принципов априорного знания, Пространство и Время. Что такое, – спрашивает он дальше, – Пространство и Время? Они реальны? А если нет, они формы или отношения вещей, но такие, какие присущи им, даже если они перестанут восприниматься? Или они есть формы или отношения, присущие исключительно форме интуиции и, следовательно, субъективной реальности нашего разума, без которых такие понятия, как пространство и время, никогда не получится отнести к чему-либо?»

Прежде чем услышать ответы Канта на данные вопросы, обратимся за двумя разъяснениями к словарю. «Кант… считал, что априорное знание состоит из конкретных «допущений» (как пространство и время) и принципов понимания, которые предположительно необходимы, чтобы опыт в целом стал интеллигибельным (постижимым умом)». Это устанавливает постоянно циркулирующую a priori, к которой обращается Кант. Другое техническое слово «аподиктический», которое означает «вовлекающий или выражающий неопровержимую истину, абсолютно верную, а также способную быть продемонстрированной ясно и удобно». Считая, что эти смысловые определения ясны (хотя едва ли такие четкие, как те, что приняты в элементарной геометрии, к которой адресует их Кант), постараемся понять, что же он хотел сказать. Ниже мы приводим изложенные Кантом выводы в четырех обобщенных предположениях, из которых нам необходимо взять только основное.

1. «Пространство не есть эмпирическое понятие, которое появляется из опыта… Образно пространство не может быть взято через опыт из отношений внешнего феномена, но, напротив, внешний феномен становится возможным только через представление о пространстве».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эрик Белл читать все книги автора по порядку

Эрик Белл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Магия чисел. Математическая мысль от Пифагора до наших дней отзывы


Отзывы читателей о книге Магия чисел. Математическая мысль от Пифагора до наших дней, автор: Эрик Белл. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x