Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней

Тут можно читать онлайн Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент «Центрполиграф»a8b439f2-3900-11e0-8c7e-ec5afce481d9, год 2014. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Магия чисел. Математическая мысль от Пифагора до наших дней
  • Автор:
  • Жанр:
  • Издательство:
    Литагент «Центрполиграф»a8b439f2-3900-11e0-8c7e-ec5afce481d9
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9524-5138-4
  • Рейтинг:
    3.5/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней краткое содержание

Магия чисел. Математическая мысль от Пифагора до наших дней - описание и краткое содержание, автор Эрик Белл, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Американский математик, исследователь в области теории чисел Эрик Т. Белл посвятил свою книгу истории происхождения математической мысли и разработки численной теории с момента ее зарождения в древности до современной эпохи. Обоснованно и убедительно автор демонстрирует влияние, которое оказала «магия чисел» на развитие религии, философии, науки и математики. Э.Т. Белл рассматривает процесс превращения числа из инструмента счета в объект культуры, сформировавшийся в VI веке до н. э. в школе древнегреческого философа, мистика, физика-экспериментатора и математика Пифагора – главного героя его исследования. Основополагающим моментом учения великого ученого древности стала доктрина о том, что «все сущее есть число». Доктор Белл изучил развитие этой доктрины: ее упадок в XVII веке и блистательное возрождение в современной физике. Автор также представил и проанализировал труды таких гигантов математики, как Галилей, Джордано Бруно, Ньютон.

Магия чисел. Математическая мысль от Пифагора до наших дней - читать онлайн бесплатно ознакомительный отрывок

Магия чисел. Математическая мысль от Пифагора до наших дней - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Эрик Белл
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Математика для интуиционистов сродни (интуитивно?) «точной части нашего мышления» и является предшествующей как для логики, так и для философии. Источником математики декларировано «интуитивное предположение, которое представляет существующие математические концепции и подразумевает, что они для нас сразу ясны». Имеет место отрицание факта, что интуиция в любых отношениях мистична, для них она просто «способность рассматривать раздельно конкретные концепции и умозаключения, появляющиеся регулярно в общественном сознании». Интересно слегка дополнить данное отрицание и утверждение тем, что словарь определяет как понятие «мистицизм»: «Доктрина или вера в то, что прямое знание Бога, духовных истин и высшей реальности и так далее доступно через посреднические институты, предвидение или просветление, способом, отличным от обычного чувственного восприятия и логического рассуждения». «Объекты», с которыми имеют дело математики-интуиционисты, содержатся непосредственно в мысли. Напоминает «априорно синтетическую» геометрию Канта, но, в отличие от нее, эти объекты интуиционистов не зависят от опыта и не существуют вне мысли.

Античные и средневековые догмы заново появились также и в интуиционистских утверждениях о способности человека представить последовательность «четких, отдельных объектов», полученных путем неограниченного присоединения объектов к тем, что уже представлены. Начиная с «единицы» и концептуальной процедуры по «добавлению единицы», интуиционист таким образом постигает интуитивно бесконечную последовательность натуральных чисел 1, 2, 3… бесконечным повторением процедуры. Эта способность интуитивно постигать бесконечную последовательность чисел, как мы видим, далеко не универсальна как среди примитивных, так и среди цивилизованных людей, если, конечно, эта «способность» по умолчанию, согласно гипотезе, латентна, хотя и ненаблюдаема. Бескомпромиссный финитист (такой, как Кронекер) начнет утверждать, что бесконечность интуиционистов имеет только не имеющее смысла устное существование или на бумаге, а не интуитивное существование в уме человечества. Финитист отрицает бесконечность как обман, унаследованный от вышедших из моды философий и осмеянных теологий, поскольку может существовать и без них.

Пребывая в благоговейном страхе перед Кантом, Брауер придерживался мировоззрения Канта в отношении пространства и времени. Позднее (1912) он избавится от априорного пространства, но более преданно воспримет априорное время. Год 1912-й вспомнили, чтобы подчеркнуть тот факт, что математический интуиционизм старше на четырнадцать лет, чем современная квантовая теория физики. Эта теория и последующее развитие атомной физики побудили физиков-теоретиков как минимум очистить свои интуитивные познания «пространства», «времени», «числа» и «идентичности» до концепции, адекватной для описания всех наблюдаемых физических явлений, особенно тех, за которые, как утверждалось, были ответственны атомные ядра. Ситуация в философии в определенном смысле аналогична той, которая последовала за появлением неевклидовой геометрии в описании природы после успеха общей теории относительности. Почти как в классической геометрии (евклидовой), были найдены положения, неадекватные конкретным научным задачам, поэтому традиционное «время» и все остальное требовали пересмотра, чтобы соответствовать идущей вперед науке. Казалось, если математика не вернется к стерильному формализму, ей придется обратиться к науке, где ею пользуются и продолжают оживлять.

Хотя ядра атомов слишком малые частицы, чтобы оказаться поводом для встречи с несколькими величайшими в истории философами-математиками, по меньшей мере трое из них объединились на этой почве. В процессе приспособления к современному научному окружению Пифагору, Аристотелю и Канту пришлось отказаться от некоторых своих самых бережно оберегаемых убеждений. Пифагор отбросил универсальное «число», Аристотель – «тождество», а Кант – свое «время». На макроскопическом (большого масштаба) уровне нет проблем с идентификацией и счетом обозреваемых объектов. Например, каждый камень в куче может быть идентифицирован и отличается от соседнего, а все вместе камни легко пронумеровать: один, два, три… пока куча не будет пересчитана. Это иллюстрирует одну из четырех вообразимых возможностей в плане идентификации и счета. А что три оставшиеся? Физики нашли примеры для двух. Приведем только выводы: квант света нельзя идентифицировать и посчитать, электроны нельзя идентифицировать и посчитать. Таким образом, как минимум в физике древнее понятие «число» лишилось своего универсального значения. Что касается «пространства» и «времени», то они тоже потеряли свою традиционную универсальность, когда перешли к жизни атомных ядер, если вообще не утратили значения, став второразрядными и искусственными «конструкциями», применяемыми из экономии языка для математического описания наблюдаемых явлений. Еще один-два шага в указанном направлении, и, может быть, обнаружится, что эти мнимые «неизбежности» мысли оказываются даже не «применимостями», а вышедшими из моды препятствиями, мешающими пониманию явления.

Чтобы завершить перечень главных изменений, происходящих с базовыми рассуждениями в попытке объяснить природу математики, приведем вердикт по традиционной философии, вынесенный современным логиком и математиком. В 1933 году Рудольф Карнап, позднее присоединившийся к знаменитому Венскому кружку, в своей работе оценил ситуацию следующим образом: «Большинство философов уделяют ей скудное внимание [новой логике, созданной математиками с 1854 года и, особенно, примерно с 1890 года]. Подозрительная сдержанность, с которой они подходят к этой новой логике, немного удивляет.

Математические одеяния, в которые она рядится, действительно пугают, но она побуждает и более глубокую враждебность, которую мы начинаем ясно различать. Недоверие порождено опасностью, которая угрожает позициям старой философии. И действительно, каждая философия, в старом смысле слова, относится ли это к Платону, святому Фоме Аквинскому, Канту, Шеллингу, Гегелю, или к появившимся новым «метафизикам сущего», или к «диалектической философии», подвергается неумолимой критике со стороны новой логики как доктрины, не ложной по содержанию, но логически несостоятельной, а потому лишенной смысла».

Достаточно красноречиво. Поскольку мы завершили рассуждения о великих философах математики Кантом, мы вынуждены воздержаться от удовольствия открыть для себя гениальные мысли Гегеля по вопросам естествознания и математики. Чтобы компенсировать это упущение, опять же процитируем Карнапа: «Поскольку все законы логики тавтологичны и пусты [без фактического наполнения], они ничего не могут нам сказать о реально существующем мире. Любая диалектическая метафизика (и больше всего у Гегеля) по этой причине нелегитимна».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эрик Белл читать все книги автора по порядку

Эрик Белл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Магия чисел. Математическая мысль от Пифагора до наших дней отзывы


Отзывы читателей о книге Магия чисел. Математическая мысль от Пифагора до наших дней, автор: Эрик Белл. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x